## Phase transition and nanomechanical properties of refractory high-entropy alloy thin films: effects of co-sputtering Mo and W to a TiZrHfNbTa system

Changjun Cheng<sup>1</sup>, Xiaofu Zhang<sup>2</sup>, Michel J. R. Haché<sup>1</sup>, and Yu Zou<sup>1,\*</sup>

<sup>1</sup>Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario, Canada M5S 3E4

<sup>2</sup>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology and Center for Excellence in Superconducting Electronics, Chinese Academy of Sciences (CAS), Shanghai 200050, China

\*Corresponding author E-mail address: mse.zou@utoronto.ca (Y.Z.)



Fig. S1 Schematics of DC magnetron co-sputtering fabrication of TiZrHfNbTa+Mo/W samples



**Fig. S2** EDS results of the cross-sections of TiZrHfNbTa, TiZrHfNbTaMo, and TiZrHfNbTaW. To minimize the interaction volume of the electron, a low voltage (5 kV) was used for characterization: the O signal on TiZrHfNbTaMo surface results from the extra signal from the tilted area; the signal from Ti (K $\alpha$  4.508 keV) can not be fully excited; the signals from Ta (M $\alpha$  1.709 keV) / W (M $\alpha$  1.774 keV) / Si (K $\alpha$  1.739 keV) overlap with each other due to their close ionization energies.



**Fig. S3** The XRD peaks of TiZrHfNbTa, TiZrHfNbTaMo, and TiZrHfNbTaW after background subtraction, Bigaussian fitting, and normalization



Fig. S4 Grain distribution of (a) nanocrystalline and (b) amorphous materials shown in Fig. 7.



**Fig. S5** (a) Grain, (b) element, and (c,d) elastic strain distributions of a nanocrystalline material after introducing one 1/2(111) screw dislocation