Electronic Supporting Information

Computational Screening of Single Atom Catalysts Supported by VS₂ Monolayer

for Electrocatalytic Oxygen Reduction/Evolution Reactions

Zengming Qin,^a Zhongxu Wang,^a Jingxiang Zhao^{a,*}

^a Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of

Education, School of Physics and Electronic Engineering, Harbin Normal University,

Harbin, 150025, P. R. China

* To whom correspondence should be addressed. Email: xjz hmily@163.com (JZ)

Table S1. The computed ΔG values of each elemenatry step in ORR on Ni@VS₂ catalyst with and without DFT+U approach.

Elemental Step	without DFT+U	with DFT+U
$O_2 \rightarrow OOH^*$	-0.78	-0.71
$OOH^* \rightarrow O^*$	-1.54	-1.57
$O^* \rightarrow OH^*$	-1.45	-1.52
$OH^* \rightarrow H_2O$	-1.16	-1.12

TM	$\Delta G_{ m OH}*$	ΔG_{O^*}	$\Delta G_{ m OOH}*$
Ti	-1.50	-0.65	2.15
V	-1.50	-1.28	1.90
Cr	-0.86	-0.59	2.61
Mn	-0.30	0.73	3.10
Fe	0.11	1.44	3.51
Co	0.44	1.65	3.67
Ni	1.16	2.60	4.14
Cu	0.87	3.11	3.99
Zr	-1.94	-1.02	1.84
Nb	-1.68	-1.40	1.82
Мо	-1.00	-1.16	2.07
Ru	-0.54	-0.26	2.96
Rh	0.22	1.10	3.27
Pd	1.04	2.85	4.05
Ag	1.43	3.77	4.44
Hf	-2.31	-1.09	1.54
Ta	-2.21	-1.87	1.33
W	-1.62	-1.88	1.42
Re	-0.85	-1.15	2.44

Table S2. The computed free adsorption energies (ΔG , eV) of oxygenated intermediates on various TM@VS₂ materials.

Os	-0.11	0.00	2.98
Ir	-0.29	0.45	3.05
Pt	0.44	1.65	3.50

Fig. S1. The computed ab initio molecular dynamics (AIMD) simulations at 500 K under the water environments with an overall time scale of 10 ps using the Nosé–Hoover method for (a) Ni@VS₂ and (b) NiN₃@VS₂material.

Fig. S2. The computed charge density difference of various $TM@VS_2$ materials. The cyan and yellow areas represent charge depletion and charge accumulation, respectively.

Fig. S3. The computed band structures and projected density of states (PDOSs) of various TM/VS_2 materials. The Fermi level was set to zero.

Fig. S4. The computed free energy profiles of ORR (left) and OER (right) on (a) Ti,(b) V, (c) Cr, (d) Mn, (e) Fe, (f) Co, (g) Cu, (h) Zr, (i) Nb, (j) Mo, (k) Ru, (l) Rh, (m)

Pd, (n) Ag, (o) Hf, (p) Ta, (q) W, (r) Re, (s) Os, (t) Ir, and (u) Pt atoms anchored on VS_2 monolayer.

Fig. S5. The optimized structures of (a) NiN_1 , (b) NiN_2 , and (c) NiN_3 .

Fig. S6. The computed free energy profiles for ORR and OER on $NiN_3@VS_2$ monolayer with solvent effects.