Supporting Information

Construction of three-dimensional Cobalt Sulfide /Multi-Heteroatoms Co-doped Porous Carbon as Efficient Trifunctional Electrocatalyst

Jiakun Zhang, Bolan Cui, Shang Jiang, Haitao Liu, Meiling Dou*

State Key Laboratory of Chemical Resource Engineering, Laboratory of

Electrochemical Process and Technology for materials, Beijing University of

Chemical Technology, Beijing 100029, China

Corresponding author: Prof. Meiling Dou, E-mail: douml@mail.buct.edu.cn

1. Experimental Section

1.1. Materials Characterizations

Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) characterizations were performed on FE-JSM-6701F (JEOL, Japan) and JSM-2100 (JEOL, Japan) microscopes, respectively. Power X-ray diffraction (XRD) patterns were profiled on an X-ray diffractometer (D/max-2500, Rigaku, Japan) (Cu K_a radiation (λ =1.54056 Å) as the X-ray source). Thermogravimetry (TG) measurements were conducted with a STA 7300 instrument to analyze the sulfidation process under high temperature. The specific surface area and pore size distribution were investigated by nitrogen adsorption-desorption measurements on a Quantachrome AUTOSORB-SI instrument. Raman spectra were obtained on a Horiba Jobin Yvon LabRam HR800 confocal microscope using 632.8 nm as laser. X-ray photoelectron spectroscopy (XPS) measurements were performed on the ESCALAB 250 spectrometer (Thermo Fisher) (using C 1*s* peak (284.98 eV) as reference for calibration).

1.2. Electrochemical Performance Test

For the electrochemical test, a conventional three-electrode system was employed on a CHI760e workstation (Shanghai Chenhua Instrument Corporation, China) using a graphite rod and a saturated calomel electrode (SCE) as the counter and reference electrode, respectively. The electrocatalyst coated rotating ring-disk electrode (RRDE) (area=0.19625 cm², from Pine Instrument Company) was used as the working electrode. Typically, 5 mg of the as-prepared electrocatalyst was first added into 1 mL of isopropanol and then mixed with 10 μ L of Nafion (5 wt.%, DuPont) solution by ultrasonically dispersing for 0.5 h. Afterwards, 20 μ L of the homogeneous slurry was uniformly dropped on to the RRDE with catalyst loading of 788 μ g cm⁻². For OER and HER measurements, 10 μ L of the above electrocatalyst ink was coated onto glassy carbon electrode (GCE) and dried naturally with the electrocatalyst loading of 394 μ g cm⁻². For comparison, the commercial Pt/C (20 wt.% of Pt, Johnson Matthey (JM)) and RuO₂ working electrodes were also prepared by ultrasonically dispersing Pt/C or RuO₂ into isopropanol solution containing Nafion (Pt loading: 78.8 and 394 μ g cm⁻² for ORR and HER, respectively; RuO₂ loading: 394 μ g cm⁻²). All potentials are given in reference to the reversible hydrogen electrode (RHE).

1.3. Rechargeable Zn-air Assembly and Performance Test

The rechargeable Zn–air battery was assembled by using a Zn plate and a catalystloaded air electrode as the anode and cathode, respectively. 6.0 mol L⁻¹ of KOH containing 0.2 mol L⁻¹ of Zn(Ac)₂ was used as the electrolyte. For the preparation of working electrode, 2.25 mg of the as-prepared electrocatalyst was first added into 1 mL of isopropanol and then mixed with 10 μ L of Nafion (5 wt.%, DuPont) solution by ultrasonically dispersing for 0.5 h. For comparison, the commercial Pt/C and IrO₂ electrodes were also prepared by ultrasonically dispersing Pt/C or IrO₂ electrocatalysts into isopropanol solution containing Nafion. All of the homogeneous slurry was dropped on to the carbon fiber with electrocatalyst loading of 1 mg cm⁻². The effective area was controlled to be 1 cm² for both cathode and anode. All the electrochemical tests of Zn–air battery were conducted on the CHI760e electrochemical workstation. The durability of the batteries was evaluated by galvanostatic discharge-charge cycling tests (600 s discharging, followed by 600 s charging in each cycle) at a current density of 10 mA cm^{-2} .

1.4. Overall Water Splitting Assembly and Performance Test

The overall water splitting performance was measured in a typical two-electrode system by the CHI 760e electrochemical workstation using the as-prepared electrocatalysts as both cathode and anode. 1 mg of the as-prepared electrocatalyst was first added into 1 mL of isopropanol and then mixed with 10 μ L of Nafion (5 wt.%, DuPont) solution by ultrasonically dispersing for 0.5 h. 1 mol L⁻¹ of KOH was used as the electrolyte. Cathode and anode were prepared by dispersing the catalysts ink onto carbon cloth (CC) with a loading of 1.0 mg cm⁻² and dried overnight. Polarization curves were tested in 1 M KOH with a scan rate of 5 mV s⁻¹ and the durability of the catalysts was also evaluated via chronopotentiometry test at a current density of 10 mA cm⁻² for 55000 s.

Fig. S1. XRD patterns of ZIF-67.

Fig. S2. (a) Nitrogen sorption isotherms and (b) pore size distribution of ZIF-67.

Fig. S3. Representative SEM images (a) of ZIF-67 and (b) Co₉S₈/CoNSC.

Fig. S4. HR-TEM images of Co₉S₈/CoNSC.

Fig. S5. XRD patterns of Co₉S₈/CoNSC prepared at different mass ratio of S/ZIF-67

(1/2, 1/8 and 1/16).

Fig. S6. Raman spectra of Co₉S₈/CoNSC prepared with different temperature.

Fig. S7. Summary of (a) specific surface area and (b) pore volume of $Co_9S_8/CoNSC$.

Fig. S8. EDX analysis of Co₉S₈/CoNSC.

Fig. S9. CV curves of Co₉S₈/CoNSC in N₂- and O₂-saturated 0.1 M KOH.

Fig. S10. LSV curves of ZIF-67, CoNSC, CoNC, NC and Co₉S₈/CoNSC in 0.1 M KOH

at a scan rate of 5 mV s⁻¹.

Fig. S11. (a) CV curves of the samples prepared at the sulfidation holding time of 1, 2 and 4 h (at 900 °C) in N₂ (dotted line) and O₂-saturated (solid line) 0.1 M KOH. LSV curves of the samples prepared at holding time of 1, 2 and 4 h (b) toward ORR in 0.1 M KOH at a scan rate of 5 mV s⁻¹ in the range 0-1.2 V vs. RHE, (c) toward OER in 1 M KOH at a scan rate of 10 mV s⁻¹ in the range (0.947)-1.747 V vs. RHE and (d) toward

HER in the range (-0.353)-0.147 V vs. RHE.

Fig. S12. (a) CV curves of the samples prepared at the sulfidation heating rate of 2, 5 and 8 °C min⁻¹ (at 900 °C) in N₂ (dotted line) and O₂-saturated (solid line) 0.1 M KOH. LSV curves of the samples prepared at heating rate of 2, 5 and 8 °C min⁻¹ (b) toward ORR in 0.1 M KOH at a scan rate of 5 mV s⁻¹ in the range 0-1.2 V *vs.* RHE, (c) toward OER in 1 M KOH at a scan rate of 10 mV s⁻¹ in the range (0.947)-1.747 V *vs.* RHE and (d) toward HER in the range (-0.353)-0.147 V *vs.* RHE.

Fig. S13. (a) LSV curves of Co₉S₈/CoNSC prepared at different mass ratio of S/ZIF-67

(1/2, 1/8 and 1/16) in 0.1 M KOH at a scan rate of 5 mV s⁻¹ and (b) summary of $E_{1/2}$ and J_k for the above electrocatalysts.

Fig. S14. XPS survey spectra of Co₉S₈/CoNSC before / after CV test toward ORR.

Fig. S15. (a) High-resolution XPS spectra of O 1s and (b) Co 2p of Co9S8/CoNSC before and after CV test toward ORR.

Fig. S16. Raman spectra of Co₉S₈/CoNSC before and after CV test towards ORR.

Fig. S17. LSV curves of ZIF-67, CoNSC, CoNC and Co₉S₈/CoNSC in 1 M KOH at a scan rate of 10 mV s⁻¹.

Fig. S18. (a) LSV curves of $Co_9S_8/CoNSC$ prepared at different mass ratio of S/ZIF-67 (1/2, 1/8 and 1/16) in 1 M KOH at a scan rate of 10 mV s⁻¹ and (b) Nyquist plots o for

the above electrocatalysts.

Fig. S19. CV curves of (a) $Co_9S_8/CoNSC-1/2$, (b) $Co_9S_8/CNSC-1/8$, (c) $Co_9S_8/CNSC-1/6$ in 1 M KOH electrolyte for OER during the potential range of 1.1-1.2 V *vs*. RHE and (d) relation of current density versus scan rate for $Co_9S_8/CoNSC$ prepared at different mass ratio of ZIF-67/S.

Fig. S20. LSV curves of ZIF-67, CoNSC, CoNC and Co₉S₈/CoNSC in 1 M KOH at a scan rate of 10 mV s⁻¹.

Fig. S21. (a) LSV curves of $Co_9S_8/CoNSC$ prepared at different mass ratio of ZIF-67/S (2, 8 and 16) in 1 M KOH at a scan rate of 10 mV s⁻¹ and (b) Nyquist plots o for the above electrocatalysts.

Fig. S22. XRD patterns of CoNC, CoNSC and Co₉S₈/CoNSC

Fig. S23. Discharge curves of Zn–air batteries based on the $Co_9S_8/CoNSC$ and Pt/C-IrO₂ electrodes at 10 mA cm⁻².

Sample	Co (%)	S (%)	N (%)	C (%)	0 (%)
Co ₉ S ₈ /CoNSC-500	8.56	11.49	15.38	48.32	16.26
Co ₉ S ₈ /CoNSC-600	8.76	9.66	13.8	51.57	16.2
Co ₉ S ₈ /CoNSC-700	9.23	12.12	9.24	48.76	20.65
C09S8/C0NSC-800	9.07	13.05	6.71	61.58	9.6
C09S8/C0NSC-900	10.43	15.37	4.84	62.4	6.96
C0988/C0NSC-1000	7.78	12.03	3.35	70.71	6.13

Table S1. Element composition and content for Co₉S₈/CoNSC based on XPS analysis.

Table S2. Summary of ORR performance of Co_xS-based materials in 0.1 M KOH.

Matavials	Eonset	$E_{1/2}$	Loading	Doforonao
wrateriais	(V vs. RHE)	(V vs. RHE)	(mg cm ⁻²)	Kelerence
Co ₉ S ₈ @NSCM	0.97	0.81	0.15	1
Co ₉ S ₈ @NC	0.92	0.861	0.248	2
Co ₉ S ₈ /CD@NSC	/	0.84	0.255	3
Ni ₃ Fe-Co ₉ S ₈ /rGO	0.91	0.80	0.25	4
CoS ₂ /Cu ₂ S-NF	/	0.80	0.265	5
Co ₉ S ₈ /CoNSC	0.983	0.889	0.788	This work

Table S3. XPS results for the $Co_9S_8/CoNSC$ sample before and after CV test.

Element	Co (at. %)	S (at. %)	N (at. %)	C (at. %)	O (at. %)
Before test	1.89	6.19	4.35	77.24	10.33
After test	2.11	2.76	3.65	70.42	21.06

Materials	Overpotential @ J ₁₀ /mV	Loading (mg cm ⁻²)	Reference
Co_9S_8 (MoS_2	340	0.40	6
Co ₉ S ₈ @TDC	330	1.4	7
Co ₉ S ₈ /NSCP	370	0.331	8
CeO _x /CoS	269	0.2	9
Co _x S _y @C	470	0.141	10
Co ₉ S ₈ @SNC	320	0.22	11
Co ₉ S ₈ @NOSC	340	0.28	12
Ni ₃ S ₂ nanosheet	260	4.1	13
Ni ₂ P	290	0.25	14
CoMnP	330	0.285	15
NiCo-LDH	335	1	16
Co ₄ N	330	0.83	17
C0 ₉ S ₈ /CoNSC-900-4 h	266	0.394	This work
C0 ₉ S ₈ /CoNSC-900-2 h	326	0.394	This work
C0 ₉ S ₈ /CoNSC-900-1 h	368	0.394	This work
Co ₉ S ₈ /CoNSC-900-2 °C min ⁻¹	370	0.394	This work
Co ₉ S ₈ /CoNSC-900-8 °C min ⁻¹	407	0.394	This work

Table S4. Summary of previously reported non-precious metal electrocatalysts forOER in 1.0 M KOH.

Table S5. Summary of TMCs-based electrocatalysts for HER in 1.0 M KOH.

Matavials	Overpotential	Tafel slope	Defenence
wateriais	@ j ₁₀ / mV	(mV dec ⁻¹)	Kelerence
MoS ₂ @CoS ₂	96	60	18
Co ₉ S ₈ -NDCL	146	70	19
Co ₉ S ₈ HNSs	267	139	20
Co ₉ S ₈ nanotubes	280	135	21
Co ₉ S ₈ -Ni ₃ S ₂ /NF	277	171	22
C09S8/CoNSC	233	93.78	This work

 Table S6. Summary of performance for Zn-air battery.

Materials	Power density (mW cm ⁻²)	Specific Capacity (mA h g _{Zn} ⁻¹)	Energy density (Wh kg _{Zn} ⁻¹)	Cycling stability (h)	Reference
NPS-G	151	686	805	20	23
CoO/N-CNT	265	570	700	22	24
Co _{1-x} S/Co ₉ S ₈	168.2	817.9	973.3	78	25
Co/NGC-3	134.4	716	847.4	120	26
Co/Co ₉ S ₈ -NCL	112	799	/	25	27
Co ₉ S ₈ /CoNSC	150	812	939.5	40	This work

 Table S7. Summary of performance for overall water splitting in 1.0 M KOH.

Matariala	Overpotential @ 10	Cycling	Dofessores
Wateriais	mA cm ⁻²	Stability (h)	Reference
Co ₉ S ₈ -NSC@Mo ₂ C	1.61 V	20	28
Co_9S_8 MoS_2	1.67 V	16	29
$Co_9S_8-V_3S_4$	1.53 V	48	30
MoS_2/NiS_2	1.63V	24	31
Co ₉ S ₈ @NiCo ₂ O ₄	1.55 V	50	32

_

Co ₉ S ₈ /CoNSC	1.585 V	34	This work

REFERENCES

- 1 Y. Li, W. Zhou, J. Dong, Y. Luo, P. An, J. Liu, X. Wu, G. Xu, H. Zhang and J. Zhang, *Nanoscale*, 2018, **10**, 2649-2657.
- F. Bai, X. Qu, J. Wang, X. Chen and W. Yang, ACS Appl. Mater. Interfaces, 2020, 12, 33740-33750.
- 3 P. Zhang, D. Bin, J. S. Wei, X. Q. Niu, X. B. Chen, Y. Y. Xia and H. M. Xiong, *ACS Appl. Mater. Interfaces*, 2019, **11**, 14085-14094.
- 4 X. Hu, T. Huang, Y. Tang, G. Fu and J. M. Lee, *ACS Appl. Mater. Interfaces*, 20 19, **11**, 4028-4036.
- 5 Y. Z. Chen, C. Wang, Z. Y. Wu, Y. Xiong, Q. Xu, S. H. Yu and H. L. Jiang, *Adv. Funct. Mater.*, 2015, **27**, 5010-5016.
- 6 J. Li, G. Li, J. Wang, C. Xue, X. Li, S. Wang, B. Han, M. Yang and L. Li, *Inorg. Chem. Front.*, 2020, 7, 191-197.
- 7 J.-Y. Zhao, R. Wang, S. Wang, Y.-R. Lv, H. Xu and S.-Q. Zang, J. Mater. Chem. A, 2019, 7, 7389-7395.
- 8 X. Gao, Z. Xu and G. Li, Chem. Eng. J., 2022, 431, 133385.
- 9 N. Huang, S. Yan, L. Yang, M. Zhang, P. Sun, X. Lv and X. Sun, J. Solid State Chem., 2020, 285, 121185.
- 10 B. Chen, R. Li, G. Ma, X. Gou, Y. Zhu and Y. Xia, *Nanoscale*, 2015, 7, 20674-20684.
- 11 F. Xu, J. Zhao, J. Wang, T. Guan and K. Li, J. Colloid Interface Sci., 2022, 608, 2623-2632.
- 12 S. Huang, Y. Meng, S. He, A. Goswami, Q. Wu, J. Li, S. Tong, T. Asefa and M. Wu, *Adv. Funct. Mater.*, 2017, **27**, 1606585.
- 13 X. Xu, F. Song and X. Hu, Nat. Commun., 2016, 7, 12324.
- 14 M. Liu and J. Li, ACS Appl. Mater. Interfaces, 2016, 8, 2158-2165.
- 15 P. Chen, K. Xu, Z. Fang, Y. Tong, J. Wu, X. Lu, X. Peng, H. Ding, C. Wu and Y. Xie, Angew. Chem., Int. Ed., 2015, 54, 14710–14714.
- 16 J. S. Chen, J. Ren, M. Shalom, T. Fellinger and M. Antonietti, ACS Appl. Mater. Interfaces, 2016, 8, 5509–5516.
- 17 T. Liu, Y. Liang, Q. Liu, X. Sun, Y. He and A. M. Asiri, *Electrochem. Commun.*, 2015, **60**, 92–96.
- 18 S. He, H. Du, K. Wang, Q. Liu, J. Sun, Y. Liu, Z. Du, L. Xie, W. Ai and W. Huang, *Chem. Commun*, 2020, **56**, 5548-5551.
- 19 J. Mujtaba, L. He, H. Zhu, Z. Xiao, G. Huang, A. A. Solovev and Y. Mei, *ACS Appl. Nano Mater.*, 2021, **4**, 1776-1785.
- 20 X. Ma, W. Zhang, Y. Deng, C. Zhong, W. Hu and X. Han, *Nanoscale*, 2018, **10**, 4816-4824.
- 21 L. Jin, C. Lv, J. Wang, H. Xia, Y. Zhao and Z. Huang, J. Anal. Chem., 2016, 7, 210-218.
- 22 R. Illathvalappil, P. S. Walko, F. Kanheerampockil, S. K. Bhat, R. N. Devi and S. Kurungot, *Chem. Eur. J.*, 2020, **26**, 7900-7911.

- 23 X. Zheng, J. Wu, X. Cao, J. Abbott, C. Jin, H. Wang, P. Strasser, R. Yang, X. Chen and G. Wu, *Appl. Catal. B-Environ.*, 2019, **241**, 442-451.
- 24 Y. G. Li, M. Gong, Y. Liang, J. Feng, J. E. Kim, H. Wang and H. J. Dai, *Nat. Commun.*, 2013, 4, 1805.
- 25 B. N. Wang, D. Chen, H. Z. Dong, Y. Huang, L. Sui, B. L. Pang and L. F. Dong, *Electrochim. Acta*, 2021, **388**, 138594.
- 26 J. M. Li, Y. M. Kang, D. Liu, Z. Q. Lei and P. Liu. ACS Appl. Mater. Interfaces, 2020, 12, 5717-5729.
- 27 N.-F. Yu, C. Wu, W. Huang, Y.-H. Chen, D.-Q. Ruan, K.-L. Bao, H. Chen, Y. Zhang, Y. Zhu, Q.-H. Huang, W.-H. Lai, Y.-X. Wang, H.-G. Liao, S.-G. Sun, Y.-P. Wu and J. Wang, *Nano Energy*, 2020, 77.
- 28 X. H. Luo, Q. L. Zhou, S. Du, J. W. Zhong, X. L. Deng and Y. L. Liu, ACS Appl. Mater. Interfaces, 2018, 10, 22291-22302.
- 29 J. M. Bai, T. Meng, D. L. Guo, S. G. Wang, B. G. Mao and M. H. Cao, ACS Appl. Mater. Interfaces, 2018, 2, 1678-1689.
- 30 X. Dong, Y. Q. Jiao, G. C. Yang, H. J. Yan, A. Wu, D. Z. Guo, Y. Wang, C. G. Tian and H. G. Fu, *Sci China Mater*, 2021, **64**, 1396-1407.
- 31 J. Xu, J. Rong, Y. Zheng, Y. Zhu, K. Mao, Z. Jing, T. Zhang, D. Yang and F. Qiu, *Electrochim. Acta*, 2021, 385, 138438.
- 32 X. Q. Du, C. Y. Zhang, H. B. Wang, Y. H. Wang and X. S. Zhang. J. Alloys Compd., 2021, **885**, 160972.