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1. Experimental Section

1.1. Materials Characterizations

Scanning electron microscopy (SEM) and high-resolution transmission electron 

microscopy (HR-TEM) characterizations were performed on FE-JSM-6701F (JEOL, 

Japan) and JSM-2100 (JEOL, Japan) microscopes, respectively. Power X-ray 

diffraction (XRD) patterns were profiled on an X-ray diffractometer (D/max-2500, 

Rigaku, Japan) (Cu Kα radiation (λ=1.54056 Å) as the X-ray source). 

Thermogravimetry (TG) measurements were conducted with a STA 7300 instrument 

to analyze the sulfidation process under high temperature. The specific surface area and 

pore size distribution were investigated by nitrogen adsorption-desorption 

measurements on a Quantachrome AUTOSORB-SI instrument. Raman spectra were 

obtained on a Horiba Jobin Yvon LabRam HR800 confocal microscope using 632.8 nm 

as laser. X-ray photoelectron spectroscopy (XPS) measurements were performed on the 

ESCALAB 250 spectrometer (Thermo Fisher) (using C 1s peak (284.98 eV) as 

reference for calibration).

1.2. Electrochemical Performance Test 

For the electrochemical test, a conventional three-electrode system was employed 

on a CHI760e workstation (Shanghai Chenhua Instrument Corporation, China) using a 

graphite rod and a saturated calomel electrode (SCE) as the counter and reference 

electrode, respectively. The electrocatalyst coated rotating ring-disk electrode (RRDE) 

(area=0.19625 cm2, from Pine Instrument Company) was used as the working 

electrode. Typically, 5 mg of the as-prepared electrocatalyst was first added into 1 mL 



of isopropanol and then mixed with 10 μL of Nafion (5 wt.%, DuPont) solution by 

ultrasonically dispersing for 0.5 h. Afterwards, 20 μL of the homogeneous slurry was 

uniformly dropped on to the RRDE with catalyst loading of 788 μg cm-2. For OER and 

HER measurements, 10 μL of the above electrocatalyst ink was coated onto glassy 

carbon electrode (GCE) and dried naturally with the electrocatalyst loading of 394 µg 

cm-2. For comparison, the commercial Pt/C (20 wt.% of Pt, Johnson Matthey (JM)) and 

RuO2 working electrodes were also prepared by ultrasonically dispersing Pt/C or RuO2 

into isopropanol solution containing Nafion (Pt loading: 78.8 and 394 μg cm–2 for ORR 

and HER, respectively; RuO2 loading: 394 µg cm-2). All potentials are given in 

reference to the reversible hydrogen electrode (RHE). 

1.3. Rechargeable Zn-air Assembly and Performance Test

The rechargeable Zn–air battery was assembled by using a Zn plate and a catalyst-

loaded air electrode as the anode and cathode, respectively. 6.0 mol L-1 of KOH 

containing 0.2 mol L-1 of Zn(Ac)2 was used as the electrolyte. For the preparation of 

working electrode, 2.25 mg of the as-prepared electrocatalyst was first added into 1 mL 

of isopropanol and then mixed with 10 μL of Nafion (5 wt.%, DuPont) solution by 

ultrasonically dispersing for 0.5 h. For comparison, the commercial Pt/C and IrO2 

electrodes were also prepared by ultrasonically dispersing Pt/C or IrO2 electrocatalysts 

into isopropanol solution containing Nafion. All of the homogeneous slurry was 

dropped on to the carbon fiber with electrocatalyst loading of 1 mg cm- 2. The effective 

area was controlled to be 1 cm2 for both cathode and anode. All the electrochemical 

tests of Zn–air battery were conducted on the CHI760e electrochemical workstation. 



The durability of the batteries was evaluated by galvanostatic discharge-charge cycling 

tests (600 s discharging, followed by 600 s charging in each cycle) at a current density 

of 10 mA cm-2.

1.4. Overall Water Splitting Assembly and Performance Test

The overall water splitting performance was measured in a typical two-electrode 

system by the CHI 760e electrochemical workstation using the as-prepared 

electrocatalysts as both cathode and anode. 1 mg of the as-prepared electrocatalyst was 

first added into 1 mL of isopropanol and then mixed with 10 μL of Nafion (5 wt.%, 

DuPont) solution by ultrasonically dispersing for 0.5 h. 1 mol L-1 of KOH was used as 

the electrolyte. Cathode and anode were prepared by dispersing the catalysts ink onto 

carbon cloth (CC) with a loading of 1.0 mg cm-2 and dried overnight. Polarization 

curves were tested in 1 M KOH with a scan rate of 5 mV s-1 and the durability of the 

catalysts was also evaluated via chronopotentiometry test at a current density of 10 mA 

cm-2 for 55000 s. 

Fig. S1. XRD patterns of ZIF-67.



Fig. S2. (a) Nitrogen sorption isotherms and (b) pore size distribution of ZIF-67.

Fig. S3. Representative SEM images (a) of ZIF-67 and (b) Co9S8/CoNSC.

Fig. S4. HR-TEM images of Co9S8/CoNSC.



Fig. S5. XRD patterns of Co9S8/CoNSC prepared at different mass ratio of S/ZIF-67 

(1/2, 1/8 and 1/16).

Fig. S6. Raman spectra of Co9S8/CoNSC prepared with different temperature.



Fig. S7. Summary of (a) specific surface area and (b) pore volume of Co9S8/CoNSC.

Fig. S8. EDX analysis of Co9S8/CoNSC.

Fig. S9. CV curves of Co9S8/CoNSC in N2- and O2-saturated 0.1 M KOH.



Fig. S10. LSV curves of ZIF-67, CoNSC, CoNC, NC and Co9S8/CoNSC in 0.1 M KOH 

at a scan rate of 5 mV s-1.

Fig. S11. (a) CV curves of the samples prepared at the sulfidation holding time of 1, 2 

and 4 h (at 900 °C) in N2 (dotted line) and O2-saturated (solid line) 0.1 M KOH. LSV 

curves of the samples prepared at holding time of 1, 2 and 4 h (b) toward ORR in 0.1 

M KOH at a scan rate of 5 mV s-1 in the range 0-1.2 V vs. RHE, (c) toward OER in 1 

M KOH at a scan rate of 10 mV s-1 in the range (0.947)-1.747 V vs. RHE and (d) toward 



HER in the range (-0.353)-0.147 V vs. RHE. 

Fig. S12. (a) CV curves of the samples prepared at the sulfidation heating rate of 2, 5 

and 8 °C min-1 (at 900 °C) in N2 (dotted line) and O2-saturated (solid line) 0.1 M KOH. 

LSV curves of the samples prepared at heating rate of 2, 5 and 8 °C min-1 (b) toward 

ORR in 0.1 M KOH at a scan rate of 5 mV s-1 in the range 0-1.2 V vs. RHE, (c) toward 

OER in 1 M KOH at a scan rate of 10 mV s-1 in the range (0.947)-1.747 V vs. RHE and 

(d) toward HER in the range (-0.353)-0.147 V vs. RHE. 

Fig. S13. (a) LSV curves of Co9S8/CoNSC prepared at different mass ratio of S/ZIF-67 



(1/2, 1/8 and 1/16) in 0.1 M KOH at a scan rate of 5 mV s-1 and (b) summary of E1/2 

and Jk for the above electrocatalysts.

Fig. S14. XPS survey spectra of Co9S8/CoNSC before / after CV test toward ORR.

Fig. S15. (a) High-resolution XPS spectra of O 1s and (b) Co 2p of Co9S8/CoNSC 

before and after CV test toward ORR.

Fig. S16. Raman spectra of Co9S8/CoNSC before and after CV test towards ORR.



Fig. S17. LSV curves of ZIF-67, CoNSC, CoNC and Co9S8/CoNSC in 1 M KOH at a 

scan rate of 10 mV s-1.

Fig. S18. (a) LSV curves of Co9S8/CoNSC prepared at different mass ratio of S/ZIF-67 

(1/2, 1/8 and 1/16) in 1 M KOH at a scan rate of 10 mV s-1 and (b) Nyquist plots o for 

the above electrocatalysts.



Fig. S19. CV curves of (a) Co9S8/CoNSC-1/2, (b) Co9S8/CNSC-1/8, (c)Co9S8/CNSC-

1/16 in 1 M KOH electrolyte for OER during the potential range of 1.1-1.2 V vs. RHE 

and (d) relation of current density versus scan rate for Co9S8/CoNSC prepared at 

different mass ratio of ZIF-67/S.

Fig. S20. LSV curves of ZIF-67, CoNSC, CoNC and Co9S8/CoNSC in 1 M KOH at a 

scan rate of 10 mV s-1.



Fig. S21. (a) LSV curves of Co9S8/CoNSC prepared at different mass ratio of ZIF-67/S 

(2, 8 and 16) in 1 M KOH at a scan rate of 10 mV s-1 and (b) Nyquist plots o for the 

above electrocatalysts.

Fig. S22. XRD patterns of CoNC, CoNSC and Co9S8/CoNSC



Fig. S23. Discharge curves of Zn–air batteries based on the Co9S8/CoNSC and Pt/C-

IrO2 electrodes at 10 mA cm−2. 

Table S1. Element composition and content for Co9S8/CoNSC based on XPS analysis.

Sample Co (%) S (%) N (%) C (%) O (%)

Co9S8/CoNSC-500 8.56 11.49 15.38 48.32 16.26

Co9S8/CoNSC-600 8.76 9.66 13.8 51.57 16.2

Co9S8/CoNSC-700 9.23 12.12 9.24 48.76 20.65

Co9S8/CoNSC-800 9.07 13.05 6.71 61.58 9.6

Co9S8/CoNSC-900 10.43 15.37 4.84 62.4 6.96

Co9S8/CoNSC-1000 7.78 12.03 3.35 70.71 6.13

Table S2. Summary of ORR performance of CoxS-based materials in 0.1 M KOH.

Materials
Eonset

(V vs. RHE)

E1/2

  (V vs. RHE)

Loading

(mg cm-2)
Reference

Co9S8@NSCM 0.97 0.81 0.15 1

Co9S8@NC 0.92 0.861 0.248 2

Co9S8/CD@NSC / 0.84 0.255 3

Ni3Fe−Co9S8/rGO 0.91 0.80 0.25 4

CoS2/Cu2S-NF / 0.80 0.265 5

Co9S8/CoNSC 0.983 0.889 0.788 This work

Table S3. XPS results for the Co9S8/CoNSC sample before and after CV test.

Element Co (at. %) S (at. %) N (at. %) C (at. %) O (at. %)

Before test 1.89 6.19 4.35 77.24 10.33

After test 2.11 2.76 3.65 70.42 21.06



Table S4. Summary of previously reported non-precious metal electrocatalysts for 

OER in 1.0 M KOH.

Table S5. Summary of TMCs-based electrocatalysts for HER in 1.0 M KOH.

Materials
Overpotential

@ J10/mV

Loading

(mg cm-2)
Reference

Co9S8@MoS2 340 0.40 6

Co9S8@TDC 330 1.4   7

Co9S8/NSCP 370 0.331 8

CeOx/CoS 269 0.2   9

CoxSy@C 470 0.141 10

Co9S8@SNC 320 0.22  11

Co9S8@NOSC 340 0.28  12

Ni3S2 nanosheet 260 4.1  13

Ni2P 290 0.25  14

CoMnP 330 0.285  15

NiCo-LDH 335 1  16

Co4N 330 0.83  17

Co9S8/CoNSC-900-4 h 266 0.394 This work

Co9S8/CoNSC-900-2 h 326 0.394 This work

Co9S8/CoNSC-900-1 h 368 0.394 This work

Co9S8/CoNSC-900-2 °C min-1 370 0.394 This work

Co9S8/CoNSC-900-8 °C min-1 407 0.394 This work



Materials
Overpotential

@ j10 / mV

Tafel slope

(mV dec-1)
Reference

MoS2@CoS2 96 60 18

Co9S8-NDCL 146 70 19

Co9S8 HNSs 267 139 20

Co9S8 nanotubes 280 135 21

Co9S8-Ni3S2/NF 277 171 22

Co9S8/CoNSC 233 93.78 This work

Table S6. Summary of performance for Zn-air battery.

Table S7. Summary of performance for overall water splitting in 1.0 M KOH.

Materials
Overpotential @ 10 

mA cm-2

Cycling 

Stability (h)
Reference

Co9S8−NSC@Mo2C 1.61 V 20 28

Co9S8@MoS2 1.67 V 16 29

Co9S8-V3S4 1.53 V 48 30

MoS2/NiS2 1.63V 24 31

Co9S8@NiCo2O4 1.55 V 50 32

Materials

Power 

density 

(mW cm-2)

Specific

Capacity

(mA h gZn
-1)

Energy 

density

(Wh kgZn
-1)

Cycling 

stability

(h)

Reference

NPS-G 151 686 805 20 23

CoO/N-CNT 265 570 700 22 24

Co1-xS/Co9S8 168.2 817.9 973.3 78 25

Co/NGC-3 134.4 716 847.4 120 26

Co/Co9S8-NCL 112 799 / 25 27

Co9S8/CoNSC 150 812 939.5 40 This work



Co9S8/CoNSC 1.585 V 34 This work
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