Supporting Information

Lignin-derived flexible porous carbon material for highly

efficient polyselenides and sodium regulation

Linchao Zeng, ^a Jianhui Zhu, ^a Jiahong Wang, ^a Licong Huang, ^a Xiaowu liu, ^b Wei Lu

^a and Xuefeng Yu*a

^a Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
 ^b Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui 237012, China

*Corresponding author E-mail: xf.yu@siat.ac.cn

Figure S1. SEM images of the Fe-BC (A) and Fe-BC/rGO (B).

Figure S2. (A) Full range XPS spectra of the Fe-BC. High-resolution C 1s (B), N 1s

(C) and Fe 2p (D) XPS spectrum of the Fe-BC.

Figure S3. Corresponding fast Fourier transformation of Fe-BC/rGO.

Figure S4. Dark-field TEM image (A) and corresponding element mapping distribution (B-E) of the Se@Fe-BC/rGO.

Figure S5. SEM images of the BC (A), BC/rGO (B) and Se@BC/rGO (C).

Figure S6. TEM (A) and HR-TEM (B) images of the Se@BC/rGO. Dark-field TEM image (F) and corresponding element mapping distribution (D-G) of the Se@BC/rGO.

Figure S7. XRD (A) and Raman (B) spectrums of the Fe-BC and BC.

Figure S8. XRD (A) and Raman (B) spectrums of the Se@Fe-BC/rGO and Se@BC/rGO.

Figure S9. TG curves of the Se@Fe-BC/rGO and Se@BC/rGO in a pure N_2 atmosphere.

Figure S10. (A) N_2 adsorption/desorption isotherms and (B) pore-size distribution curves of the Fe-BC/rGO and Se@Fe-BC/rGO. (C) N_2 adsorption/desorption isotherms and (D) pore-size distribution curves of the BC/rGO and Se@BC/rGO.

Figure S11. CV curves of the Se@BC/rGO at sweep rate from $0.5-2.0 \text{ mV s}^{-1}$ at voltage range of 0.8-3.0V.

Figure S12. Electrochemical performance of the Fe-BC/rGO and BC/rGO at a current density of 0.1 A g^{-1} .

Figure S13. Long-term cycling performance of Se@Fe-BC/rGO.

Figure S14. SEM images of the Se@Fe-BC/rGO after extending cycles (inset is the photograph of Se@Fe-BC/rGO electrode after extending cycles).

Figure S15. EIS of the Se@Fe-BC/rGO and Se@BC/rGO after 4 cycles and 50 cycles.

 Table S1. Comparison between the as-prepared Se@Fe-BC/rGO electrode with the

 recent reported electrodes for Na-Se batteries.

Cathode S loading Current density Retained capacity Reference

	$(mg cm^{-2})$	(A g ⁻¹)	$(mAh g^{-1})$	
Se@Fe-BC/rGO	~1.0	0.1	568 mAh g ⁻¹ after	This work
			300 cycles	
SC@Se-25Al ₂ O ₃	~1.2	0.05	548 mAh g ⁻¹ after	Nano Energy
			140 cycles	43 (2018)
				317-325
Se@NOPC-CNT	~1.5	0.1	582 mAh g ⁻¹ after	Adv. Mater.
			200 cycles	30 (2018)
				1805234
Se/N-HRMC	~1.0	0.27	611 mAh g ⁻¹ after	J. Mater.
			200 cycles	Chem. A 6
				(2018)
				22790-
				22797
Se@PCNFs	~0.8	0.1	520 mAh g ⁻¹ after	Adv. Energy
			80 cycles	Mater. 5
				(2015)
				1401377

Figure S16. Molten Na test on the surfaces of Fe-BC/rGO film (A) and BC/rGO film (B), respectively. The molten Na metal can spread out on the surface of Fe-BC/rGO film, while retaining the sphere shape on the surface of BC/rGO film, indicating Fe-BC/rGO film has a much better wettability to Na metal than that of BC/rGO film.

Figure S17. Cycling performance of Na symmetrical cells without any interlayer material cycled at 1 mA cm⁻² with a fixed capacity of 1 mAh cm⁻².

Figure S18. SEM images of the BC/rGO film before (A) and after the 100th cycles (B) at 1 mA cm⁻² with a fixed capacity of 1 mAh cm⁻². (C) SEM images of Na electrodes with BC/rGO interlayer after 100 cycles at 1 mA cm⁻² with a fixed stripping/plating capacity of 1 mAh cm⁻².

Figure S19. Elemental line sweep of the BC/rGO interlayer after the 100th discharge.

Figure S20. Cross-section SEM images of the Fe-BC/rGO film before (A) and after (B) 100 cycles at 1 mA cm⁻² with a fixed capacity of 1 mAh cm⁻². Cross-section SEM images of the BC/rGO film before (C) and after (B) 100 cycles at 1 mA cm⁻² with a fixed capacity of 1 mAh cm⁻².