Supporting information for

Understanding the Ligand's Effects on Intra-cluster and Inter-cluster

Assembly

Li Tang,^{a‡} Zhengmao Yin,^{a‡} Ru Wang,^a Bin Wang,^a Kefan Jiang,^a Mei Ding,^a and Shuxin Wang^{*a}

^aCollege of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China

[‡]These authors contributed equally to this work.

*E-mails of corresponding authors: shuxin_wang@qust.edu.cn

Notes: The authors declare no competing financial interest.

This Supporting Information includes: Figures S1-S11 Tables S1-S5

Figure S1. An optical microscopic image of the single crystals of $Cd_{12}Ag_{32}$ -2.

Figure S2. An optical microscopic image of the single crystals of $Cd_{12}Ag_{32}$ -1.

Figure S3. An optical microscopic image of the single crystals of Cd₁₂Ag₃₂-3.

Figure S4. The digital photographs describing the synthesis of $Cd_{12}Ag_{32}-1$ and $Cd_{12}Ag_{32}-2$, respectively. a), c) under Ar₂ atmosphere; b), d) in air atmosphere.

Figure S5. X-ray photoelectron spectrum (XPS) of the nanocluster. a), Cd₁₂Ag₃₂-1, b), Cd₁₂Ag₃₂-2, c), Cd₁₂Ag₃₂-3, d), Cd₁₂Ag₃₂-4.

Figure S6. (a) SEM image of a small deformed single crystal of **Cd**₁₂**Ag**₃₂**-1.** (b-d) are the elemental maps of Ag, Cd and S, respectively. (e) EDS spectrum, confirming the presence of above elements in the cluster, which is consistent with the cluster composition obtained by SCXRD data.

Figure S7. (a) SEM image of a small deformed single crystal of **Cd**₁₂**Ag**₃₂**-2.** (b-d) are the elemental maps of Ag, Cd and S, respectively. (e) EDS spectrum, confirming the presence of above elements in the cluster, which is consistent with the cluster composition obtained by SCXRD data.

Figure S8. Monitoring the ambient stability of Cd₁₂Ag₃₂-1 Cd₁₂Ag₃₂-2, Cd₁₂Ag₃₂-3 and Cd₁₂Ag₃₂-4 in solution, respectively, using UV-vis spectroscopy.

Figure S9. Monitoring the ambient stability of Cd₁₂Ag₃₂-1 Cd₁₂Ag₃₂-2, Cd₁₂Ag₃₂-3 and Cd₁₂Ag₃₂-4 in solid state, respectively, using UV-vis spectroscopy.

Figure S10. PL excitation (PLE) spectra of Cd₁₂Ag₃₂-1, Cd₁₂Ag₃₂-2 and Cd₁₂Ag₃₂-3.

Figure S11. Temperature-dependent UV-vis spectra of Cd₁₂Ag₃₂-1, Cd₁₂Ag₃₂-2, Cd₁₂Ag₃₂-3 and Cd₁₂Ag₃₂-4.

Cd ₁₂ Ag ₃₂ -1	Cd (%)	Ag (%)
XPS results	31.52	68.48
ICP results	31.39	68.61
Cd ₁₂ Ag ₃₂ -1 theoretical	18/58 (31.03)	40/58 (68.97)
results		
Cd ₁₂ Ag ₃₂ -2	Cd (%)	Ag (%)
XPS results	27.6	72.4
ICP results	27.55	72.45
Cd ₁₂ Ag ₃₂ -2 theoretical results	12/44 (27.27)	32/44(72.73)
Cd ₁₂ Ag ₃₂ -3	Cd (%)	Ag (%)
XPS results	27.01	72.99
ICP results	27.70	72.30
Cd ₁₂ Ag ₃₂ -3 theoretical results	12/44 (27.27)	32/44(72.73)

Table S1. The atomic ratio of Ag and Cd in **Cd**₁₂Ag₃₂-1 and **Cd**₁₂Ag₃₂-2 was calculated from X-ray photoelectric spectroscopy (XPS) and ICP measurements.

Table S2. List of bond lengths in $Cd_{12}Ag_{32}$, $Cd_{12}Ag_{32}$ -2 and $Cd_{12}Ag_{32}$ -3.

Bond type/Location	Cd ₁₂ A	g ₃₂ -1	Cd ₁₂ A	g ₃₂ -2	Cd ₁₂	Ag ₃₂ -3	Cd ₁₂ /	g ₃₂ -4
Bond length	range (Å)	average (Å)	range (Å)	average (Å)	range (Å)	average (Å)	range (Å)	average (Å)
Ag-Ag/within Ag ₄ inner core	2.845-2.857	2.851	2.853-2.909	2.876	2.811-2.811	2.811	2.834-2.863	2.847
Ag-Ag/(Ag ₄ -Ag ₂₄ layer)	2.675-3.071	2.831	2.668-3.172	2.841	2.772-3.031	2.828	2.673-3.156	2.838
Ag-Ag/(within the Ag ₂₄ layer)	2.813-3.173	2.949	2.791-3.16	2.956	2.772-3.061	2.913	2.805-3.160	2.956
Ag-S/Se/(Ag ₂₄ layer-S/Se)	2.492-2.525	2.506	2.403-2.572	2.502	2.497-2.518	2.507	2.575-2.640	2.604
Ag-S/Se/(within the ligand motif)	2.618-2.624	2.611	2.418-2.562	2.495	2.721-2.721	2.721	2.571-2.638	2.600
Ag-Cd/(within the ligand motif)	4.10-4.24	4.18	3.334-3.633	3.51	3.571-3.571	3.571	3.520-3.701	3.63
Cd-S/Se/(within the ligand motif)	2.451-2.504	2.535	2.408-2.669	2.492	2.547-2.646	2.583	2.565-2.734	2.643
Ag-P/(within the ligand motif)	2.503-2.516	2.506	-	-	-	-	-	-

Empirical formula	$Cd_{18}Ag_{40}Cl_8P_{12}S_{48}C_{552}H_{468}O_{48}$
Formula weight	16401.97
Temperature/K	170 К
Crystal system	trigonal
Space group	P-3
a/Å	33.2637(4)
b/Å	33.2637(4)
c/Å	28.1094(3)
α /°	90
β/°	90
γ /°	120
Volume/Å	26935.4(7)
Z	1
$ ho_{\rm calc}{ m g/cm}$	1.510
μ/mm	15.853
F(000)	11892
Crystal size/mm ³	0.15 x 0.1 x 0.08
Radiation	CuK ^α (1.54186 Å)
$2^{ heta}$ range for data collection/°	4.060 to 64.992
Index ranges	$-38 \le h \le 38, -30 \le k \le 39, -33 \le l \le 14$
Reflections collected	83427
Independent reflections	30227[R _{int} = 0.0373, R _{sigma} = 0.0541]
Data/restraints/parameters	30227/3810/1367
Goodness-of-fit on F ²	1.154
Final R indexes $[I \ge 2\sigma(I)]$	R1 = 0.0855, wR2 = 0.2681
Final R indexes [all data]	R1 = 0.1151, wR2 = 0.2894
Largest diff. peak/hole/eÅ ⁻³	21.837/-2.094

Table S3. Crystal data and structure refinement of Cd₁₂Ag₃₂-1.

Empirical formula	$C_{216}H_{390}Ag_{32}Cd_{12}S_{36}$
Formula weight	9842.06
Temperature/K	170К
Crystal system	orthorhombic
Space group	Pca21
a/Å	30.8174(5)
b/Å	28.5803(9)
c/Å	39.1573(7)
α /°	90
β/°	90
γ /°	90
Volume/Å	34488.6(14)
Z	4
$ ho_{\rm calc}{ m g/cm}$	1.722
μ/mm	22.257
F(000)	17368
Crystal size/mm ³	0.12 x 0.1 x 0.08
Radiation	CuK ^α (1.54184 Å)
$2^{ heta}$ range for data collection/°	2.868 to 64.997
Index ranges	$-35 \le h \le 36, -32 \le k \le 33, -30 \le l \le 40$
Reflections collected	109831
Independent reflections	44911[R _{int} = 0.1318, R _{sigma} = 0.1380]
Data/restraints/parameters	44911/3951/2666
Goodness-of-fit on F ²	0.970
Final R indexes [I >= $2\sigma(I)$]	R1 = 0.0923, wR2 = 0.2333
Final R indexes [all data]	R1 = 0.1419, wR2 = 0.2655
Largest diff. peak/hole/eÅ-3	1.957/-1.234

Table S4. Crystal data and structure refinement of Cd₁₂Ag₃₂-2.

Empirical formula	$Ag_{32}Cd_{12}S_{36}$
Formula weight	5954.80
Temperature/K	120К
Crystal system	cubic
Space group	Fm-3
a/Å	32.067(8)
b/Å	32.067(8)
c/Å	32.067(8)
α /°	90
β/°	90
γ /°	90
Volume/Å	32975(25)
Z	4
$ ho_{\rm calc}{ m g/cm}$	1.199
μ/mm	23.040
F(000)	10624
Crystal size/mm ³	0.1 x 0.1 x 0.1
Radiation	CuK ^α (1.54186 Å)
2 $^{ heta}$ range for data collection/°	4.573 to 56.784
Index ranges	$-28 \le h \le 24, -33 \le k \le 19, -34 \le l \le 9$
Reflections collected	5301
Independent reflections	1857[R _{int} = 0.0713, R _{sigma} = 0.0846]
Data/restraints/parameters	1857/0/61
Goodness-of-fit on F ²	0.920
Final R indexes $[I \ge 2\sigma(I)]$	R1 = 0.0930, wR2 = 0.2571
Final R indexes [all data]	R1 = 0.1563, wR2 = 0.3163
Largest diff. peak/hole/eÅ ⁻³	0.733/-1.235

Table S5. Crystal data and structure refinement of $Cd_{12}Ag_{32}$ -3.