Electronic Supplementary Information (ESI)

Electronic synergy to boost the performance of NiCoP-NWs@FeCoP-

NSs anodes for flexible lithium-ion batteries

Qian Wu, ^a Linlin Wang, ^{*a} Xin Mao, ^b Yujie Yang, ^a Li Yan, ^a Suyuan Zeng, ^c Kangning Zhao, ^d Qiu-an Huang, ^a Minmin Liu, ^a Xiaojing Liu, ^{*b} Jiujun Zhang^{*a} and Xueliang Sun^e

^aInstitute for Sustainable Energy/College of Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China.

^bInstitute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China.

^cDepartment of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P.R.China.

^dLaboratory of Advanced Separations (LAS) École Polytechnique Fédérale de Lausanne (EPFL) Sion CH-1950, Switzerland.

^eDepartment of Mechanical and Materials Engineering, University of Western Ontario, 1151 Richmond St, London, Ontario, N6A 3K7, Canada.

E-mails: wlinlin@mail.ustc.edu.cn; liuxj2020@sdu.edu.cn; jiujun.zhang@i.shu.edu.cn

Fig. S1 SEM images of the NiCo-NWs/CC.

Fig. S2 SEM images of the FeCo-NSs/CC

Fig. S3 CV curves of the (a) NiCoP-NWs/CC and (b) FeCoP-NSs/CC electrodes.

Fig. S4 CV curves of the pure CC.

Fig. S5 CV curves of NiCoP-NWs and FeCoP-NSs/CC at different scan rates.

Fig. S6 The relationship between log *i* and log *v*, and the value of b for (a) NiCoP-NWs/CC, and (d) FeCoP-NSs/CC. The capacitive contribution at 0.6 mV/s for (b) NiCoP-NWs/CC, and (e) FeCoP-NSs/CC; the diffusion contribution and capacitive contribution at different scan rates for (c) NiCoP-NWs/CC, and (f) FeCoP-NSs/CC.

Fig. S7 The energy profiles for different diffusion channels of Li⁺ in FeCoP-NSs.

Fig. S8 The charge/discharge profiles of the NiCoP-NWs@FeCoP-NSs/CC anode and LiFePO₄ cathode at the current density of 0.1 A g⁻¹.

Fig. S9 Comparison of full-cell rate capability between LiFePO4//NiCoP-NWs@FeCoP-NSs/CC and other reported previously.

Materials	Current	Capacity/Cy	Ref.	
	density (A g ⁻¹)	cles		
S-CoP	0.5	442.8/300 th	S 1	
CoP@PNS-CNS	0.1	595.3/100 th	S2	
CoP@C⊂PCF/NCNTs	0.5	712.3/700 th	53	
Ni ₂ P/NG/Ni ₂ P	0.3	417/300 th	S 3	
NiCoP/C	1	$593.6/500^{th}$	S 4	
MOF-derived NiCoP	1	$104/100^{th}$	23	
Ni ₂ P/C	0.2	324/200 th	44	
Ni ₂ P@NPC	1	603/800 th	S5	
Ni ₂ P@NPCNFs	0.2	850/450 th	S 6	
NiCoP-NWs@FeCoP-	1	1172.6/300 th	This work	
NSs/CC				

Table S1: Electrochemical performances comparison between this work and previouslyreported transition metal phosphides in LIBs.

Full cells		Rate performance							Ref.
	0.05	0.1	0.2	0.3	0.5	1	1.5	2	
Fe ₃ O ₄ @C//LiFePO ₄		138	136		120	102		77	S7
CoMn ₂ O ₄ @MoO ₃ //LiFePO ₄	668	600		517	453		374		S 8
NiO/SnO2@rGO//LiCoO2	866	755	700		600	477			S 9
Sb⊂CTHNs//LiMn ₂ O ₄	637.4	451.3	390.3		355.7	311.6		283.2	S 10
MnSe⊂3D CNM//LiMn ₂ O ₄	575.5	524.6	448.5		395.8	340.1		299.7	S 11
NSGS-8//LiCoO ₂	757.9	632	555.7		548.5				S12
LiFePO4//NiCoP-		899.6	843.7		794.5	728.1		581.5	This
NWs@FeCoP-NSs/CC									work

Table S2: Comparison of full-cell rate capability between LiFePO4//NiCoP-NWs@FeCoP-NSs/CC and other reported previously.

Movie S1: 5 minutes of video of a soft lithium-ion battery powering an LED light.

References

[S1] F. Shang, W. Yu, R. Shi, S. Wan, H. Zhang, B. Wang and R. Cao, *Appl. Surf. Sci.*, 2021, 563, 150395.

[S2] W. Zhou, J. Qin, F. Liu, T. Ma, C. Qiu, Y. Yu, Z. Liu, Y. Song and Y. Zhu, *Mater. Today Energy*, 2021, **21**, 100734.

[S3] C. Dong, L. Guo, Y. He, C. Chen, Y. Qian, Y. Chen and L. Xu, *Energy Stor. Mater.*, 2018, **15**,234-241.

[S4] Y. D. Mo, J. C. Liu, L. Zhong, M. Xiao, S. Ren, D. M. Han, S. J. Wang and Y. Z. Meng, ACS Appl. Nano Mater., 2019, 2, 6880-6888.

[S5] S. S. Shi, Z. P. Li, Y. Sun, B. Wang, Q. N. Liu, Y. L. Hou, S. F. Huang, J. Y. Huang and Y. F. Zhao, *Nano Energy*, 2018, 48, 510-517.

[S6] Z. Du, W. Ai, J. Yang, Y. Gong, C. Yu, J. Zhao, X. Dong, G. Sun and W. Huang, *ACS Sustain. Chem. Eng.*, 2018, **6**, 14795-14801.

[S7] D. Qu, Z. Sun, J. Xu, Z. Song, H. Kong, B. Zhao, X. Dong and L. Niu, *Chem. Eur. J.*, 2020, 26, 8121-8128.

[S8] W. Dang, C. Feng, P. Deng, L. Xiao, Z. Ban, X. Tang and Y. Zhang, J. Mater. Sci., 2021, 56, 649-663.

[S9] Y. He, A. Li, C. Dong, C. Li and L. Xu, Chem. Eur. J., 2017, 23, 13724-13733.

[S10] L. Yu, L. Zhang, J. Fu, J. Yun and K. H. Kim, *Chem. Eng. J.*, 2021, **417**, 129106.

[S11] L. Yu, L. Zhang, J. Kang and K. H. Kim, *Chem. Eng. J.*, 2021, **423**, 130243.

[S12] H. G. Wang, Q. Wu, Y. H. Wang, X. Wang, L. L. Wu, S. Y. Song and H. J. Zhang, *Adv. Energy Mater.*, 2019, **9**, 1802993.