
Supporting Information

Combined Physical Confinement and Chemical Adsorption on Co-doping Hollow TiO₂ for Long-Term Cycle Lithium-sulfur Batteries

Shuaibo Zeng,*[a] Jing Peng,[a] Xinghua Liang,*[b] Xi Wu,[b] Haorong Zheng,[a] Hai Zhong,[c] Tuan Guo,[c] Shihan Luo,[a] Jingyin Hong,[a] Yongyi Li,[a] Qiang Wu,[a] and Wei Xu*[a]

Figure S1. Size distribution of (a) DHT, and (b) S@DHT composite as determined by particle density analysis instrument.

Table S1. Specific surface area, total pore volume and pore diameter of the four samples (S@DHT, S/DHT, DHT, and elemental sulfur)

Samples	S _{BET} (m ² g ⁻¹)	Total pore volume	pore diameter (nm)	
	S _{BET} (m g)	$(cm^3 g^{-1})$		
S@DHT	249.23	0.37	12.28	
S/DHT	210.81	0.29	13.56	
DHT	652.57	0.92	5.96	
Sulfur	16.39	0.17	16.23	

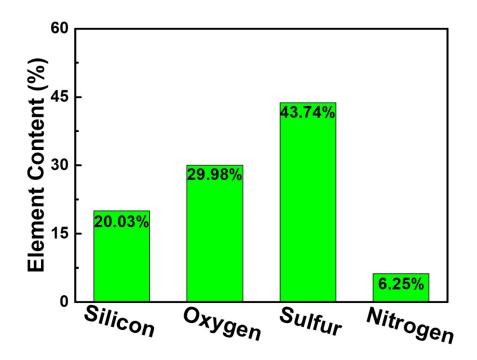


Figure S2. The summary of the elemental content histogram in the S@DHT sample.

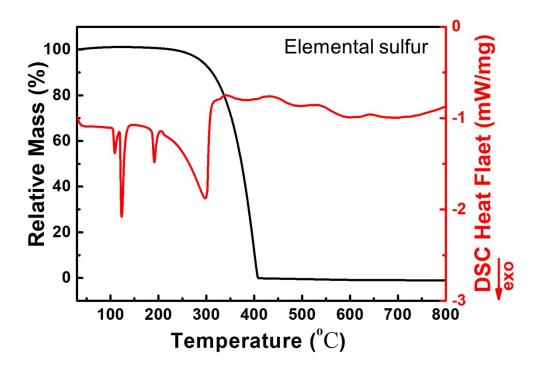
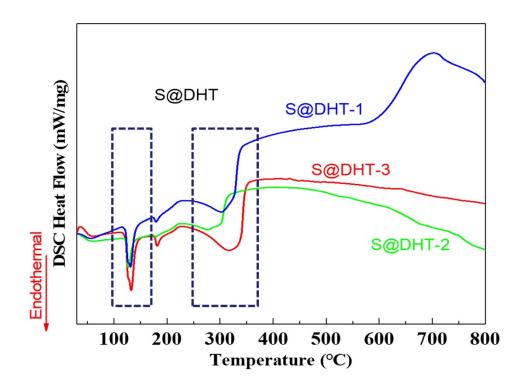
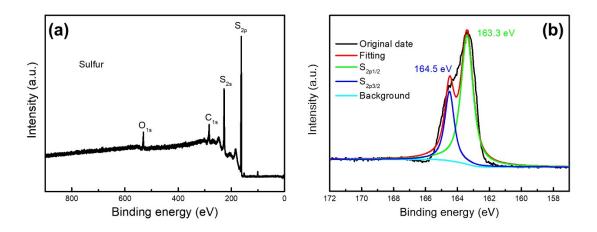
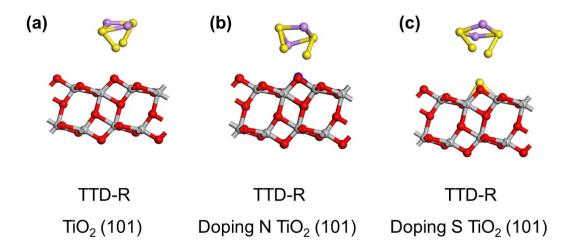
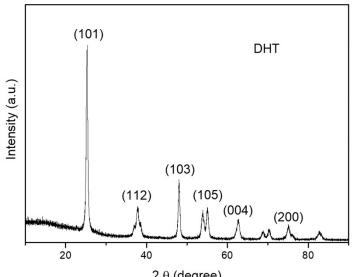
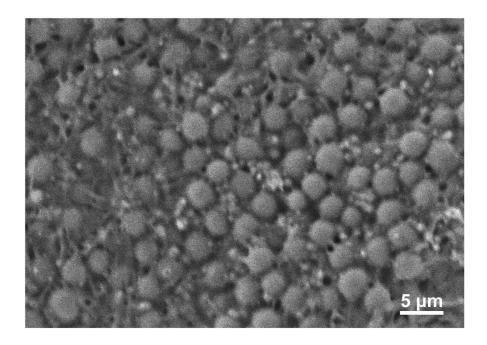
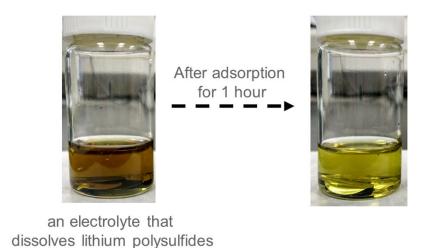


Figure S3. TGA/DSC curves of elemental sulfur [1].


Figure S4. DSC curves of the three S@DHT samples.


Figure S5. (a) XPS survey spectrum of elemental sulfur, (b) High-resolution fitting spectrum of elemental S 2p.


Figure S6. Different viewpoints optimized configurations of (a) between TiO₂ and Li₂S₄, (b) between N-doped TiO₂ and Li₂S₄, (c) between S-doped TiO₂ and Li₂S₄.

 2θ (degree) **Figure S7.** XRD pattern of DHT.

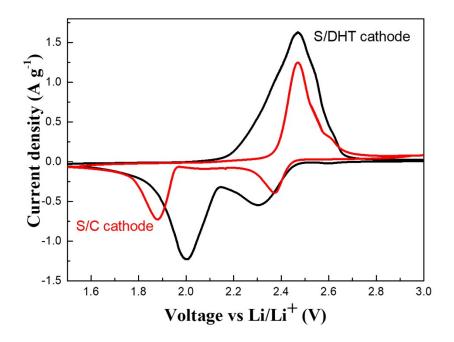
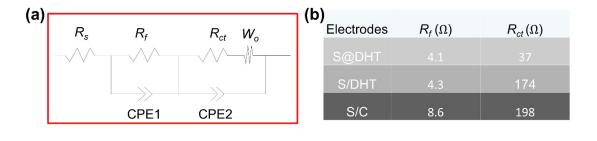

Figure S8. SEM image of sulfur electrode with S@DHT cathode.

Figure S9. Illustration of electrodes placed in an electrolyte that dissolves lithium polysulfides. The electrolyte was configured using with 1.0 mol L^{-1} lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) with 0.1 mol L^{-1} of LiNO₃ in 1,3-dioxolane and 1,2-dimethoxyethane (v/v = 1:1). Further, We prepared Li₂S₈ which was synthesis using calculated stoichiometry of Li₂S and elemental sulfur. Then the 1 mol L^{-1} Li₂S₈ was dissolves in above electrolyte. Finally, The prepared five electrodes are added to the final solution. All the above experimental steps are performed in a glove box filled with argon gas.



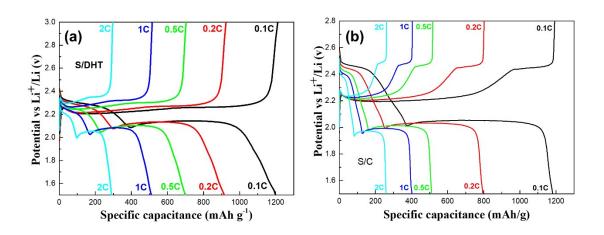

Figure S10. Practical demonstration of Li-S batteries with the S@DHT cathode.

Figure S11. CV curves of Li-S batteries with prefabricated S/DHT, S/C cathodes at scan rate of 0.2 mV s^{-1} and in the scan voltage range of $1.5 \sim 3.0 \text{ V vs Li/Li}^+$.

Table S2 (a) equivalent circuit for S@DHT, S/DHT and S/C cathodes, (b) charge-transfer resistance (R_{ct}) of different electrodes by fitting impedance spectroscopy. The high-frequency intercept on the real axis represents the ohmic resistance ($R_{\rm f}$) of the cell, including the electrolyte and electrode resistances. The semicircles in the high-frequency region along with a radial oblique line in the low-frequency region correspond to the charge-transfer resistance ($R_{\rm ct}$) and the Warburg impedance (W_0).


Figure S12. The charge and discharge of S/DHT and S/C cathodes at rate-current densities from 0.1 C to 2 C.

Table S3. The discharge capacity of the three electrodes (S/C, S/DHT, and S@DHT electrodes) with various current densities (0.1 C, 0.2 C, 0.5 C, 1 C, 2 C, and back to 0.1 C).

Samples	0.1 C	0.2 C	0.5 C	1 C	2 C	Back to 0.1 C
electrode	(mAh g ⁻¹)					
S/C	1189.6	800.2	513.7	400.9	260.1	613.4
S/DHT	1198.4	917.4	703.2	512.5	296.7	943.8
S@DHT	1258.1	1086.4	904.3	738.6	571.8	1133.9

Table S4. The electrochemical performances comparison of prepared Li-S batteries by different literatures in recent years.

References	First Discharge Capacity (mAh/g)	C-Rate Capacity (mAh/g)	Total Cycle Number	Degradation Rate Per Cycle	Coulombic Efficiency	Sulphur Loading in electrode
This work	1,258 (0.1 C)	1086 (0.2 C); 904 (0.5 C); 738 (1 C); 571 (2 C)	500	0.0478%	~100%	3.8 mg/cm ²
Small, 2020, 1906634	1,382 (0.1C)	1293 (0.2 C);1181 (0.5 C); 929 (1 C); 679 (2 C)	400	0.038%		3.61 mg cm ⁻²
J. Energy Chem., 2020, 51, 262-271	1353 (0.1C)	1110 (0.2 C);1014 (0.5 C); 950 (1 C); 886 (2 C)	500	0.05%	100%	1.5 mg cm ² 67.5 wt%
Angew. Chem. Int. Ed., 2021, 202114671	1017 (0.2 C)	903 (0.5 C); 873 (1 C); 771 (2 C); 309 (3 C); 293 (4 C)	250	~0.084%	100%	1.2 mg cm ⁻²
ACS Appl. Energy Mater. 2020, 3, 11893–11899	1211 (0.2 C)	967 (0.3 C); 908 (0.5 C); 734 (1 C); 545 (2 C)	400	~0.109%	100%	72.8 wt%

Figure S13. The different cycles (1st, 250th, 500th) discharge-charge curves of Li-S batteries with (a) S/DHT cathode, (b) S/C cathode at 0.1 C at the sulfur loading of 3.8 mg cm⁻².

References

1. S. B. Zeng, L. G. Li, L. H. Xie, D. K. Zhao, N. Zhou, N. Wang, S. W. Chen, *Carbon*, **2017**, 122, 106-113.