Supplementary Information

Confinement Induces Stable Calcium Carbonate Formation in Silica Nanopores

Hassnain Asgar,^{1,‡} Sohaib Mohammed,^{1,‡} and Greeshma Gadikota^{1,*}

*equal contribution

¹School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853

^{*} Corresponding Author. Phone: +1 607-255-4796. E-mail: gg464@cornell.edu

Figure S1. Estimation of weight changes using thermogravimetric analysis (TGA). (a) Changes in the weight loss of the as-received anodic alumina membrane (AAM) and silica nanochannels (SNCs) prepared using the sol-gel approach. Weight loss at 250 °C corresponds to CTAB removal from SNCs. (b) Changes in the weight associated with the dissociation of calcium carbonate formed in SNCs.

Figure S2. Loading of Ca^{2+} and CO_3^{2-} containing solutions in silica nanochannels. Schematic representation of sample preparation approach for carbonate formation inside silica nanochannels and organization of the formed carbonate crystals.

Figure S3. Characterization of the as-received Anodic Alumina Membrane (AAM). (a) The amorphous structure of the as-received anodic alumina membrane (AAM) determined using XRD. (b) Morphology of as-received membrane imaged using SEM.

Figure S4. X-ray diffraction (XRD) patterns of different polymorphs of calcium carbonate. Identification of different planes in polymorphs of calcium carbonate (CaCO₃) as reported in the American Mineralogist Crystal Structure Database (AMCSD). (a) XRD pattern of calcite. (b) Aragonite. (c) vaterite. The referred AMCSD datasets are also mentioned.

Atom	σ (nm)	€ (kJ/mol)	q (e)	Ref.
Silica				
Si	0.302	7.7006×10^{-6}	2.1000	1
O bridging	0.316	0.650190	-1.0500	1
O nonbridging	0.316	0.650190	-0.9500	1
Н	0.000	0.000000	0.4250	1
SPCE				
0	0.316	0.6502	-0.82	2
Н	0.000	0.000	0.41	2
Ions				
Ca ²⁺	0.2412	1.88136	2.000	3
C (CO ₃)	0.356	0.29288	1.420	3
$O(CO_3)$	0.303	0.50208	-1.140	3

Table S1. The forcefields parameters of the atoms in silica pores, water molecules and ions are obtained from the references listed in Ref. column.

 σ is the finite distance at which the interatomic potential is zero.

 ε is the depth of the potential well.

q is the atomic charge.

References

- 1 R. T. Cygan, J. J. Liang and A. G. Kalinichev, J. Phys. Chem. B, 2004, 108, 1255–1266.
- 2 H. J. C. Berendsen, J. R. Grigera and T. P. Straatsma, J. Phys. Chem., 1987, **91**, 6269–6271.
- 3 W. L. Jorgensen, D. S. Maxwell and J. Tirado-Rives, *J. Am. Chem. Soc.*, 1996, **118**, 11225–11236.