Electronic Supplementary Information

In vitro and ex vivo nano-enabled immunomodulation by protein corona

Francesca Giulimondi,^{a#} Luca Digiacomo,^{a#} Elisabetta Vulpis,^a Daniela Pozzi,^a Luisa Loconte,^a

Gianmarco Ferri,^b Francesco Cardarelli,^b Alessandra Zingoni^a and Giulio Caracciolo^{a*}

^aDepartment of Molecular Medicine, "Sapienza" University of Rome, Viale Regina Elena 291,

00161 Rome, Italy

^bLaboratorio NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; gianmarco.ferri@sns.it, francesco.cardarelli@sns.it

^cDepartment of Radiology and Precision Health Program, Michigan State University, East Lansing,

MI, USA.

These authors contributed equally: Francesca Giulimondi, Luca Digiacomo,

* giulio.caracciolo@uniroma1.it

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

Fig. S1. Synthetic identity of DOTAP/GNS complexes as a function of the GSN/DOTAP weight ratio. (a) Representative zeta-potential distributions of DOTAP/GNS complexes at GSN/DOTAP weight ratios equal to 0,05, 0,1, 0,2, 0,4, 1, and 2 (from left to right). (b) Size distributions DOTAP/GNS complexes at GSN/DOTAP weight ratios equal to 0,01, 0,05, 0,1, 0,2, 0,4, 1, and 2 (from left to right). The coating data collapsed into two groups: 1) Low-density decoration (LD) for GSN/DOTAP weight ratio < 0,2 and corresponding to light purple distributions; 2) high-density decoration (HD) for GSN/DOTAP weight ratio > 0,2 and corresponding to deep purple distributions. (c) Zeta-potential and size values of DOTAP/GNS complexes as a function of the GSN/DOTAP weight ratio. Data are reported as the average of three independent measurements \pm standard deviation.

Figure S2. One-dimensional (1D) SDS-PAGE image of DOTAP-protein complexes.

i) Plasma sample (*i.e.*, not incubated with DOTAP) subjected to the same isolation procedure followed to isolate proteins from DOTAP. The empty lane indicates that the protein content of the "HP blank" sample is negligible with respect to that truly associated with cationic DOTAP. This is straight evidence that the centrifugation-based isolation method used in the present investigation resulted in minor if any, contamination by unbound proteins and biological NPs⁵⁰;

ii) DOTAP-HP complexes.

iii) High-density (HD) decoration DOTAP-GSN (GSN/DOTAP molar ratio = 1).

iv) Low-density (LD) decoration DOTAP-GSN (GSN/DOTAP weight ratio = 0,1).

v) HD DOTAP-GSN complexes exposed to HP for 1-hour at 37 °C.

vi) LD DOTAP-GSN complexes exposed to HP for 1-hour at 37 °C.

The Lane labeled with "MW" indicates the protein ladder.

Figure S3. Cell viability of human monocytic THP-1 cells as a function of lipid dose. Cells were seeded on 96-well plates (50,000 cells/well) and were incubated with bare DOTAP at increasing amounts (1, 2, 4, 6, 8, 10, and 12 μ g/well).

Cellular uptake of DOTAP-GSN in THP1-cells

Another explanation for the superior cell uptake of HD DOTAP-GSN could be that non-specific particle-cell interaction triggered internalization. NP size and charge can both contribute to non-specific uptake. Previous studies demonstrated that macrophages were able to efficiently recognize and internalize NPs with a diameter above 100 nm.34 However, because all the NPs used in the present study were larger than 100 nm (Table S1 of the ESI), we were unable to correlate changes in NP internalization with size-dependent non-specific internalization. A second putative non-specific uptake mechanism by macrophages might be mediated by charge effects. Several previous investigations clarified that NP uptake is promoted by cationic charge34, 35. However, uptake results reported here (Figure 2) did not correlate with particle zeta-potential (Table S1 of the ESI). Indeed, the two formulations that displayed the lowest cell uptake (*i.e.*, DOTAP and LD DOTAP-GSN) were both positive in charge. In conclusion, our in vitro findings suggest that neither the particle size nor the charge was good predictors of uptake efficiency.

Table S1. Following exposure to human plasma (HP) for 1 hour at 37°C, DOTAP, LD DOTAP-GSN, and HD DOTAP-GSN are coated by a protein corona of HP proteins that provides them with an identity expressed in terms of size, polydispersity index (pdl), and zeta-potential.

	Size (nm)	pdI	Zeta-potential (mV)
DOTAP/HP	163 ± 14	0,3	-22.1 ± 1.3
LD DOTAP-GSN/HP	182 ± 7	0,2	-28 ± 4
HD DOTAP-GSN/HP	318 ± 14	0,5	-13 ± 3.5

Figure S4. **Temporal evolution of leukocyte uptake**. DOTAP/HP (yellow), LD DOTAP-GSN/HP (light purple), HD DOTAP-GSN/HP (deep purple) were injected into whole blood and the leukocyte uptake was assessed as a function of time. The fluorescence signal of internalized nanoparticles was measured as the percentage of FITC-positive cells by gating on distinct leukocyte subpopulations. Data analysis was performed using FlowJo software, with results reported as mean ± standard deviation of three healthy donors. Statistical significance is reported as a p-value from Student's *t*-test as follows: DOTAP vs LD-DOTAP-GSN-HP (solid line); DOTAP vs HD-DOTAP-GSN-HP (dotted line).

Figure S5. Leukocyte uptake of DOTAP/HP (top panels) and HD DOTAP-GSN/HP complexes (bottom panels) relative to a representative donor after 30 minutes of incubation. Data are shown as the percentage of FITC-positive cells in distinct leukocyte populations.

Figure S6. DOTAP/HP and DOTAP-GSN/HP complexes do not trigger Toll-like receptor 2 (TRL2) and TLR 4 activation in reporter cells. HEK293-NF-kB-luciferase reporter cells (a) transfected with TLR2 (b) or TLR4 (c) were incubated for 5 hours with DOTAP/HP, HD DOTAP-GSN/HP, and specific TLR2 or TLR4 agonists namely Pam3CSK4 and LPS, respectively. Data are expressed as NF-kBinduced luciferase activity (a.u.). NT: not treated. A representative experiment is shown.

Supplementary Table S2. Material	Yes	No
characterization Question		
1.1 Are "best reporting practices" available for the	Not applicable	
nanomaterial used?		
1.2 If they are available, are they used? If not available	ole,	
ignore this question and proceed to the next one.		
1.3 Are extensive and clear instructions reported	V	
detailing all steps of synthesis and the resulting		
composition of the nanomaterial?		
1.4 Is the size (or dimensions , if non-spherical) of	V	
the nanomaterial reported?		
1.5 Is the size dispersity or aggregation of the	V	
nanomaterial reported?		
1.6 Is the zeta potential of the nanomaterial	V	
reported?		
1.7 Is the concentration (mass/volume) of the	V	
nanomaterial reported?		
1.8 Is the amount of any drug loaded reported?	Not applicable	
'Drug' here broadly refers to functional cargos		
(<i>e.g.</i> , proteins, small molecules, nucleic acids).		
1.9 Is the targeting performance of the	Not applicable	
nanomaterial reported, including amount of ligand		
bound to the hanomaterial if the material has been		
functionalised through addition of targeting		
1 10 is the label signal per percentatorial (perticle		
1.10 is the label signal per hanomaterial/particle	V	
narticle for fluorescently labeled nanomaterials		
1 11 If a material property not listed here is varied	Not applicable	
has it been quantified ?		
1 12 Were characterizations performed in a fluid	V	
mimicking biological conditions?	•	
1.13 Are details of how these parameters were	V	
measured/estimated provided?		

Supplementary Table 2. Biological	Yes	No

characterization Question	
2.1 Are cell seeding details, including number of	
cells plated, confluency at start of experiment,	
and time between seeding and experiment	
reported?	
2.2 If a standardised cell line is used, are the	
designation and source provided?	
2.3 Is the passage number (total number of times a	Not applicable
cell culture has been subcultured) known and	
reported?	
2.4 Is the last instance of verification of cell line	No
reported? If no verification has been performed, is	
the time passed and passage number since	
acquisition from trusted source (e.g., ATCC or	
ECACC) reported? For information, see Science	
547(2015)958;	
2.5 Are the regults from myconlosme testing of	No
2.5 Are the results from mycopiasina testing of call cultures reported?	INO
2.6 Is the background signal of colls/tissue	
2.0 is the background signal of cells the fluorescence signal of cells	N N
without particles in the case of a flow cytometry	
experiment)	
2.7 Are toxicity studies provided to demonstrate	Not applicable
that the material has the expected toxicity, and that	
the experimental protocol followed does not?	
2.8 Are details of media preparation (type of	
media, serum, any added antibiotics) provided?	
2.9 Is a justification of the biological model used	
provided? For examples for cancer models, see	
<i>Cancer Res.</i> 75 (2015) 4016;	
http://doi.org/10.1158/0008-5472.CAN-15-1558,	
and Mol. Ther. 20 (2012) 882;	
http://doi.org/10.1038/mt.2012.73, and ACS Nano	
11(2017)9594; 14(11)(10)1021/(7104055)	
http://doi.org/10.1021/acsnano./b04855	
2.10 Is characterization of the biological fluid (ex	N
investigating protein adsorption onto papaparticles	
dispersed in blood serum, pertinent aspects of the	
blood serum should be characterised (ρq protein	
concentrations and differences between donors used	
in study).	
2.11 For animal experiments , are the ARRIVE	Not applicable
guidelines followed? For details, see <i>PLOS Biol.</i> 8	TL
(2010) e1000412;	
http://doi.org/10.1371/journal.pbio.1000412	

Supplementary Table 2. Experimental details	Yes	No
		-

Question	
3.1 For cell culture experiments: are cell culture	
dimensions including type of well, volume of added	
media, reported? Are cell types (<i>i.e.</i> ; adherent versus	
suspension) and orientation (if non-standard)	
reported?	
3.2 Is the dose of material administered reported?	
This is typically provided in nanomaterial mass,	
volume, number, or surface area added. Is sufficient	
information reported so that regardless of which one is	
provided, the other dosage metrics can be calculated	
(<i>i.e.</i> , using the dimensions and density of the	
nanomaterial)?	
3.3 For each type of imaging performed, are details of	Not applicable
how imaging was performed provided, including	
details of shielding, non-uniform image processing,	
and any contrast agents added?	
3.4 Are details of how the dose was administered	
provided, including method of administration,	
injection location, rate of administration, and details	
of multiple injections?	
3.5 Is the methodology used to equalise dosage	N
provided?	
3.6 Is the delivered dose to tissues and/or organs (<i>in</i>	Not applicable
<i>vivo</i>) reported, as % injected dose per gram of tissue	
(%ID g ₋₁)?	
3.7 Is mass of each organ/tissue measured and mass	Not applicable
of material reported?	
3.8 Are the signals of cells/tissues with	N
nanomaterials reported? For instance, for	
fluorescently labeled nanoparticles, the total number of	
particles per cell or the fluorescence intensity of	
particles + cells, at each assessed timepoint.	
3.9 Are data analysis details, including code used for	N
analysis provided?	
3.10 Is the raw data or distribution of values	N
underlying the reported results provided? For	
examples, see K. Soc. Open Sci. 3 (2010) 15054/;	
http://doi.org/10.1098/rsos.15054/,	
nups://opennessinitiative.org/making-your-data-	
public, hup://journais.pios.org/piosone/s/data-	
availaumity, and	
nttps://www.nature.com/sdata/policies/repositories	