## Supporting Information for

# Cupric Porphyrin Frameworks on Multi-junction Silicon Photocathode to Expedite the Kinetics of CO<sub>2</sub> Turnover

Zhihe Wei,<sup>1,2</sup> Qiaoqiao Mu,<sup>1</sup> Ronglei Fan,<sup>2</sup> Yanhui Su,<sup>1</sup> Yongtao Lu,<sup>1</sup> Zhao Deng,<sup>1</sup> Mingrong Shen<sup>2</sup>\*, Yang Peng<sup>1</sup>\*

<sup>1</sup>Soochow Institute of Energy and Material Innovations, College of Energy, Soochow Municipal Laboratory for Lowe Carbon Technoliges and Industries, Soochow University, Suzhou 215006, China.

<sup>2</sup>School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China.

\*Email: mrshen@suda.edu.cn, ypeng@suda.edu.cn

### **Experimental section**

#### Materials

All the reagents, including methyl p-formylbenzoate, pyrrole, propionic acid, dichloromethane (CH<sub>2</sub>Cl<sub>2</sub>), methanol (CH<sub>3</sub>OH), tetrahydrofuran (THF), hydrochloride (HCl), cupric acetate anhydrous (Cu(CH<sub>3</sub>COO)<sub>2</sub>), sodium hydroxide (NaOH), silver nitrate (AgNO<sub>3</sub>), ammonium persulphate ((NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>8</sub>), N,N-Dimethylformamide (DMF), tetrabutylammonium tetrafluoroborate (TBABF<sub>4</sub>), acetonitrile (MeCN), absolute ethanol and tetrakis (4-carboxyphenyl) porphyrin (H<sub>2</sub>TCPP) were obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China), and used as received without further purification.

#### **Preparation of TCPP(Cu)**

The metalloporphyrin ligand TCPP(Cu) was synthesized following a previous report with some modifications.<sup>1</sup> Firstly, methyl p-formylbenzoate (6.53 g, 40 mmol) was dissolved in propionic acid (100 mL) in a 500 mL three necked flask. Pyrrole (2.68 g, 40 mmol) was then added dropwise, and the mixture was refluxed for 2 h. After the reaction mixture was cooled to room temperature, purple crystals (TPP-COOMe) were collected by suctionfiltration (~15% yield). Next, TPP-COOMe (0.5 g) and Cu(CH<sub>3</sub>COO)<sub>2</sub> (2 g) were added into a mixed solvent of  $CH_2Cl_2$  (100 mL) and  $CH_3OH$  (100 mL), followed by refluxing for 6 h. Then, the solvents of  $CH_2Cl_2$  and  $CH_3OH$  were distilled and 150 mL of  $H_2O$  was introduced. The resultant precipitate was filtered and washed with 50 mL of  $H_2O$  twice. The obtained dark red solid was redissolved in  $CHCl_3$  and washed three times with distilled water. The organic layer was then dried over anhydrous magnesium sulfate and evaporated to give crystals in almost 100% yield. The obtained ester was stirred in a mixed solvent of 50 mL THF/ 50 mL  $CH_3OH$ / 50 mL  $H_2O$  contain 0.75 g NaOH. This mixture was refluxed for 6 h, followed by heating to 100 °C unitl all THF and  $CH_3OH$  were evaporated. The mixture was acidified with 1 M HCl to pH = 4. The solid was collected by filtration and washed with water until the  $Cl^-$  ions in the filtrate was undetectable by AgNO<sub>3</sub>. Finally, the solid was dried in vacuum for overnight and properly stored for further use.

#### Fabrication of SiT, SiTC and SiTCM and SiTCM(Cu)

The preparation of pyramidal n<sup>+</sup>-p Si wafers refers to our previous work.<sup>2</sup> The pyramidal n<sup>+</sup>-p Si wafers were cut into pieces of 1.2 cm × 1.2 cm with the surface oxides etched by 5 wt% HF. The etched wafer was immediately transferred to an atomic layer deposition (ALD) chamber for depositing the TiO<sub>2</sub> protective layer (denoted as SiT). A ~5 nm protective layer of TiO<sub>2</sub> was deposited on the n<sup>+</sup>-p Si wafer by using Tetra(dimethylamino) titanium (TDMAT) as the precursor. After TiO<sub>2</sub> deposition, a Cu overlayer of ~50 nm was further deposited by thermal evaporation at a deposition rate of 1 Å/s (denoted as SiTC). Next, the n<sup>+</sup>-p Si/TiO<sub>2</sub>/Cu electrodes were immersed in an aqueous solution (5 mL) of NaOH (0.5 M) and (NH<sub>4</sub>)<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (0.125 M) for about 10 seconds at room temperature to grow a surface array of Cu(OH)<sub>2</sub>, followed by thoroughly rinsing with ethanol and water, and drying under vacuum. The asobtained SiTC/Cu(OH)<sub>2</sub> electrodes were then immersed in 5 mL DMF solution of H<sub>2</sub>TCPP/CU) (0.5 mg/mL), transforming the Cu(OH)<sub>2</sub> array into Cu-TCPP/Cu-TCPP(Cu) MOFs. Thereby, the samples with freebase and metalloporphyrins are denoted as SiTCM and SiTCM(Cu), respectively, which were further rinsed with DMF and ethanol, and dried under vacuum at 120 °C for overnight.

To fabricate the photocathodes, a Cu wire was electrically welded to the back edge of the silicon wafer primed with an Al backcoating. Epoxy (Loctite 9460, Hysol) was used to

encapsulate the electrode surrounding, exposing a central surface area of  $\sim 1$  cm<sup>2</sup>. The exact surface area exposed were calculated by the ImageJ software.

#### Characterization

Field emission scanning electron microscopy (FEI, Scios and FE-SEM, SU8010) and transmission electron microscopy (TEM, Tecnai G2 F20-S-TWIN) equipped with an energydispersive X-ray spectroscopy analyzer (EDS) were employed to inspect the morphology and microstructure of the samples. Attenuated total reflectance Fourier-transform infrared (ATR-IR) spectra were recorded on a Nicolet iS50 spectrometer. Ultraviolet-visible (UV-vis) spectrometer with an integrating sphere detector (SHIMADZU UV-2600) was employed to acquire the UV-vis diffuse reflectance spectroscopy (DRS). Raman spectra were acquired using a confocal laser Raman microscopy (Horiba Jobin Yvon, HR Evolution) and the excitation wavelength is 532 nm. The surface composition and valence states of the samples were analyzed using X-ray photoelectron spectroscopy (XPS, Thermo Fisher, Escalab 250Xi) with all binding energy values calibrated by C 1s = 284.8 eV. CO<sub>2</sub> adsorption were determined on Micromeritics ASAP 2460. <sup>1</sup>HNMR spectra were acquired by a DD2-600 NMR spectrometer (400 MHz, Agilent Technologies). Steady-state photoluminescence spectra (PL) were measured on a FLS1000 fluorescence spectrophotometer (Edinburgh Instruments, UK) and the excitation wavelength is 340 nm.

#### PEC CO<sub>2</sub>RR Measurements

PEC CO<sub>2</sub> reduction was performed in CO<sub>2</sub>-saturated 10:1 acetonitrile (MeCN):H<sub>2</sub>O containing 0.1 M TBABF<sub>4</sub> solution in a conventional H-cell (separated by Nafion 115) under 25 °C and 1 bar, using a three-electrode configuration with the fabricated Si electrodes as the working electrodes, Ag/Ag<sup>+</sup> as the reference electrode (with a ferrocene/ferrocenium (Fc/Fc<sup>+</sup>) couple as the internal potential reference), and a carbon rod as the counter electrode. During PEC measurements, the photocathodes were irradiated by a Xenon lamp source (Beijing Perfectlight Technology, PLS-SXE300+) equipped with an AM 1.5G and UV cut-off ( $\lambda > 420$  nm) filter. The intensity of the light was adjusted to 100 mW cm<sup>-2</sup>, as quantified by a Thorlabs power calibrator. High-purity CO<sub>2</sub> gas of 20 cm<sup>3</sup> min<sup>-1</sup> was supplied to the gas chamber controlled by a digital mass flow controller (Horiba). An electrochemical workstation (CHI

660E, Shanghai Chenhua Instruments) was used to conduct the linear sweep voltammetries (LSV) curves and chronoamperometries. LSV curves were performed at a scan rate of 50 mV/s. As the Ag/Ag<sup>+</sup> electrode is not a standard reference for a nonaqueous system, the recorded potentials vs. Ag/Ag<sup>+</sup> were converted to the ones vs. Fc/Fc<sup>+</sup> by the following equation:  $E(vs. Fc/Fc^+) = E(vs. Ag/Ag^+) - E(Fc/Fc^+)$ , where the Fc/Fc<sup>+</sup> potential vs. Ag/Ag<sup>+</sup> is measured as 0.19 V in acetonitrile.<sup>3</sup> The reactor cell was connected to a gas chromatography (GC, FL9790 Plus, FULI INSTRUMENTS). H<sub>2</sub> were detected by TCD and CO was detected by FID. Electrochemical impedance spectra (EIS) were carried out at -2.5 V (vs. Fc/Fc<sup>+</sup>) under visible light irradiation and CO<sub>2</sub>-saturation conditions in 10:1 (V/V) MeCN-H<sub>2</sub>O containing 0.1 M TBABF<sub>4</sub> solution. Chopped light response experiments were performed at - 2.5 V (vs. Fc/Fc<sup>+</sup>) under visible light irradiation and CO<sub>2</sub>-saturation conditions in the same electrolyte.

2nF

Q The faradaic efficiency (FE) of CO and H<sub>2</sub> was calculated by using the equation:

FE (%) =

where 2 is the number of electrons required for CO and  $H_2$  products, n is the total amounts of products (moles), F represents the Faraday constant (96485 C mol<sup>-1</sup>), and Q corresponds to the amount of cumulative charge during CO<sub>2</sub> reduction.

#### CV Measurements with Standalone MOF Powders

Electrochemical CV tests were carried out by loading the separately prepared MOF catalysts (Cu-TCPP/Cu-TCPP(Cu)) onto glassy carbon working electrodes in Ar/CO<sub>2</sub>saturated MeCN-H<sub>2</sub>O (10:1) electrolyte containing 0.1 M TBABF<sub>4</sub>. To prepare the catalyst ink, 4 mg of the sample powder and 1mg of Ketjen Black were mixed with 50 µL Nafion solution (5%) in 1 mL ethanol by ultrasonic dispersion for 15 min. Next, 10 µL of the asprepared ink was drop-coated onto the glassy carbon electrode with a surface area of 0.197 cm<sup>-2</sup>, ٥C followed by heating 50 until completely dried. at

# **Supplementary Figures**



Fig. S1 SEM images of SiT.



Fig. S2 SEM images of the Cu coating on SiTC.



Fig. S3 SEM images of the surface Cu(OH)<sub>2</sub> arrays on SiTC.



Fig. S4 SEM images of SiTCM with different magnifications.



Fig. S5 ATR-IR spectra of TCPP(Cu) and H<sub>2</sub>TCPP.



Fig. S6 Raman spectra of TCPP(Cu) and H<sub>2</sub>TCPP.



Fig. S7 SEM images of different magnifications for (a1, a2) pristine SiTCM(Cu), and (b1, b2) SiTCM(Cu) immersed in 0.1 M TBABF<sub>4</sub>/ MeCN:H<sub>2</sub>O (10:1) for one week.



Fig. S8 ATR-IR spectra of the pristine and immersed SiTCM(Cu).



Fig. S9 The CO Faradaic efficiencies of SiTCM(Cu) in electrolyte solutions with different ratio of acetonitrile to water at - 2.5 V (vs. Fc/Fc<sup>+</sup>) under illumination.



Fig. S10 (a) Setup to measure the electrolyte temperature. (b) Change of the temperature with continuous

irradiation for a total of 3 hours.



Fig. S11 LSV curves of SiTCM and SiTCM(Cu) in dark and illuminated conditions.



Fig. S12 <sup>1</sup>HNMR of the electrolyte after the potentiostatic PEC CO<sub>2</sub>RR by SiTCM(Cu).



Fig. S13 Chronoamperometric stability tests on SiTCM(Cu) at (a) -1.9 V and (b) -2.5 V vs. Fc/Fc<sup>+</sup>.



Fig. S14 ATR-IR spectra taken on the SiTCM(Cu) photocathodes before and after PEC CO<sub>2</sub>RR at (a) -1.9 V and (b) -2.5 V vs.  $Fc/Fc^+$ .



Fig. S15 SEM images of different magnifications taken on the SiTCM(Cu) photocathodes after PEC CO<sub>2</sub>RR for (a1, a2) 0 s, (b1, b2) 1800 s, and (c1, c2) 3600 s at -2.5 V vs. Fc/Fc<sup>+</sup>.

| Photocathode                                                                                                                           | Condition                                                           | Performance                                                             | Reference                                              |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------|
| SiTCM(Cu)                                                                                                                              | 0.1 M TBABF₄ in MeCN:H₂O (10:1),<br>100 mW cm² (AM1.5G, λ > 420 nm) | 87% CO at -10.2 mA cm <sup>-2</sup>                                     | This Work                                              |
| n <sup>+</sup> -p Si/GaN/Pt-TiO <sub>2</sub>                                                                                           | 0.5 M KHCO <sub>3</sub> , 800 mW cm <sup>-2</sup>                   | 78% CO at ~-5 mA cm <sup>-2</sup>                                       | J. Am. Chem. Soc., 2018, <b>140</b> ,<br>7869-7877.    |
| n <sup>+</sup> -p-Si NW/Au <sub>3</sub> Cu                                                                                             | 0.1 M KHCO <sub>3</sub> , 20 mW cm <sup>-2</sup>                    | ~60% CO at ~-4.5 mA cm <sup>-2</sup>                                    | Nano Lett., 2016, 16, 5675-5680.                       |
| p-Si/Ag                                                                                                                                | 0.5 M KHCO <sub>3</sub> , 50 mW cm <sup>-2</sup>                    | 60-90% CO at -9 mA cm <sup>-2</sup>                                     | J. Mater. Chem. A, 2018, 6, 21906-21912.               |
| Si n-GaN -NPhN4-Ru(CP)2 <sup>2+</sup> -<br>RuCt                                                                                        | 0.05 M KHCO <sub>3</sub> , 100 mW cm <sup>-2</sup>                  | 69% HCOO <sup>-</sup> at -1.1 mA cm <sup>-2</sup>                       | Nat. Energy, 2019, <b>4</b> , 290-299.                 |
| p-Si/mesoTiO <sub>2</sub> /CotpyP                                                                                                      | $0.1M~TBABF_4$ in MeCN:H2O (3:2), 100 $$\rm mW~cm^{-2}$$            | 47.6% CO, 12.8% HCOO <sup>-</sup> ,<br>~-0.1 mA cm <sup>-2</sup>        | Nat. Catal., 2019, 2, 354-365.                         |
| NiO Si-poly(Ru <sup>II</sup> )-poly(Re <sup>I</sup> )                                                                                  | 0.05 M KHCO <sub>3</sub> , 100 mW cm <sup>-2</sup>                  | 65% CO at ~0.015 mA $\rm cm^{-2}$                                       | ACS Energy Lett., 2019, <b>4</b> , 629-<br>636.        |
| p-i-n a-Si/TiO <sub>3</sub> /Au                                                                                                        | 0.1 M KHCO <sub>3</sub> , 100 mW cm <sup>-2</sup>                   | 50%CO at -4.8 mA cm <sup>-2</sup>                                       | Energy Environ. Sci., 2019, <b>12</b> , 923.           |
| Cu <sub>2</sub> O/Al:ZnO/TiO <sub>2</sub> /<br>Re(bpy)(CO) <sub>3</sub> Cl                                                             | 0.1 M Bu <sub>4</sub> NPF <sub>6</sub> in MeCN, 1 sun               | 95% CO at ~-2.5 mA cm <sup>-2</sup>                                     | J. Am. Chem. Soc., 2016, <b>138</b> , 1938-1946.       |
| p-Si/mesoTiO <sub>2</sub> /CoPcP                                                                                                       | 0.5 M KHCO <sub>3</sub> , 100 mW cm <sup>-2</sup>                   | 56% CO at -1.5 mA cm <sup>-2</sup>                                      | ACS Catal., 2021, 11, 1868-1876.                       |
| Cr <sub>2</sub> O <sub>3</sub> /N,Zn-Fe <sub>2</sub> O <sub>3</sub> /TiO <sub>2</sub> /<br>Ru(MeCN)CO <sub>2</sub> C <sub>3</sub> Py-P | 0.1 M KHCO <sub>3</sub> , 100 mW cm <sup>-2</sup>                   | 63% HCOOH, 30% CO at -<br>0.15 mA cm <sup>-2</sup>                      | ACS Catal., 2018, 8, 1405-1416.                        |
| CIGS f-TiO <sub>2</sub>  Co-qPyH                                                                                                       | 0.1 M KHCO <sub>3</sub> , NR                                        | 89% CO at -0.81 mA cm <sup>-2</sup>                                     | Nat. Commun., 2020, 11, 3499.                          |
| Cu <sub>3</sub> (BTC) <sub>2</sub> /Cu <sub>2</sub> O/ITO                                                                              | 0.1 M TBAPF <sub>6</sub> in MeCN                                    | 95% CO (dark)<br>0.83% STC efficiency at ~-<br>0.78 mA cm <sup>-2</sup> | J. Am. Chem., Soc., 2019, <b>141</b> ,<br>10924-10929. |

Table S1 Performance comparison of various PEC CO<sub>2</sub>RR systems engaging catalysts from recent literature.

\* TBABF<sub>4</sub>: tetrabutylammonium tetrafluoroborate; Bu<sub>4</sub>NPF<sub>6</sub> and TBAPF<sub>6</sub>: tetrabutylammonium hexafluorophosphate

\*\* NR not reported

\*\*\* STC: solar-to-CO (100 mW·cm<sup>-2</sup> with an AM 1.5G filter)

 Table S2 Fitting results of EIS taken at -2.5 V vs. Fc/Fc<sup>+</sup> under illumination in CO<sub>2</sub>-saturated electrolyte for different photocathodes.

| Photocathode | $R_s(\Omega)$ | $R_1(\Omega)$ | $R_2(\Omega)$ |
|--------------|---------------|---------------|---------------|
| SiT          | 107.0         | 39.6          | 150.5         |
| SiTC         | 106.5         | 27.8          | 100.2         |
| SiTCM        | 106.1         | 16.0          | 63.8          |
| SiTCM(Cu)    | 105.2         | 11.9          | 40.7          |

## References

1 D. Feng, H. L. Jiang, Y. P. Chen, Z. Y. Gu, Z. Wei and H. C. Zhou, Inorg Chem, 2013, 52, 12661-

12667.

- 2 R. L. Fan,; G. P. Huang,; Y. J. Wang, Z. T. Mi and M. R. Shen, Appl. Catal. B, 2018, 237, 158-165.
- 3 X. Deng, R. Li, S. Wu, L. Wang, J. Hu, J. Ma, W. Jiang, N. Zhang, X. Zheng, C. Gao, L. Wang, Q. Zhang, J. Zhu and Y. Xiong, J. Am. Chem. Soc., 2019, 141, 10924-10929.