Supplementary Information

Room temperature giant magnetoresistance in halfmetallic Cr₂C based two-dimensional tunnel junctions.

Shreeja Das, Arnab Kabiraj, and Santanu Mahapatra*

Nano-Scale Device Research Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science (IISc), Bangalore, Bangalore 560012, India

*Corresponding Author. Email: santanu@iisc.ac.in

Fig. S1: Orbital projected band structures showing contribution of C, Cr, C-s, C-p, Cr-s, Cr-p, Cr-d orbitals for (a, b, c) majority spin up states and (d, e, f) minority spin down states. (g) Total and (h, i) projected density of states for Cr2C monolayer.

Fig. S2: Density of states at different levels of on-site Hubbard correction of U = 3, 4, 5, and 6 eV.

Fig. S3: Relaxed atomic structures (top and side views) of three different metal contact – Cr2C interface: (a) Au (111) – Cr2C, (b) Ag(111)-Cr2C, and (c) Ti (0001)-Cr2C

Fig. S4: Layer dependence of TMR of graphene and h-BN MTJs at zero voltage bias.

Fig. S5: Different magnetic configurations of Cr2C considered in this study with up spin denoted by red arrows and down spins by blue arrows; (a) Ferromagnetic (FM) ordering, (b) Neel antiferromagnetic (AFM) ordering, (c) Zigzag antiferromagnetic ordering, and (d) Stripy antiferromagnetic ordering.

Fig. S6: Curie temperatures calculated from magnetization and susceptibility curves using different Hubbard correction parameters of U = 4, 5, and 6 eV.

Fig. S7: Transmission coefficients at different bias voltages for (a, c) spin up and (b, d) spin-down components of the charge carriers for graphene barrier MTJ and hBN barrier MTJ in parallel configuration, respectively. The transmission coefficients for the spin-down carriers around the bias window are shown in the insets of (c, d), where vertical lines denote the bias window.

Fig. S8: Electron localization function along the transport direction at equilibrium for graphene MTJ. (a) Spin up, and (b) Spin down localizations for parallel configuration, (c) Spin up, and (d) Spin down localizations for anti-parallel configuration.

Fig. S9: Electron localization function along the transport direction at equilibrium for hBN MTJ. (a) Spin up, and (b) Spin down localizations for parallel configuration, (c) Spin up, and (d) Spin down localizations for anti-parallel configuration.

Fig. S10: Transmission coefficients at different bias voltages for (a, c) spin up and (b, d) spin-down components of the charge carriers for graphene barrier MTJ and hBN barrier MTJ in anti-parallel configuration, respectively. The transmission coefficients for the spin-down carriers around the bias window are shown in the insets of (c, d), where vertical lines denote the bias window.

U (eV)	Total collinear	Equations to Solve	Solutions		Magnetic	Curie	Magnetic	Easy
	energy of different		(meV/link or Cr)		Moment	Temperat	Anisotropy	Magne
	spin configurations				(µ_)	ure (K)	Energy	tic
	(eV/atom).				В		(µeV/Cr)	Axis
5	-9.81, -9.68, -9.57, -	E0 - 48.0*J1 - 96.0*J2 - 48.0*J3 + 78.50 = 0	J1	17.91	3.755	1151.5	60.88	z
	9.42	E0 + 48.0*J1 - 96.0*J2 + 48.0*J3 + 77.44 = 0	J2	15.64				
		E0 - 16.0*J1 + 32.0*J2 + 48.0*J3 + 76.58 = 0	J3	-6.82				
		E0 + 16.0*J1 + 32.0*J2 - 48.0*J3 + 75.35 = 0	K1x	16.24e-3				
		-32.0*Ax - 48.0*K1x - 96.0*K2x - 48.0*K3x + 8.72e-	K2x	-11.92e-3				
		2 = 0	K3x	-12.51e-3				
		-32.0*Ax + 48.0*K1x - 96.0*K2x + 48.0*K3x +	K1z	15.98e-3				
		8.69e-2 = 0	K2z	-11.05e-3				
		-32.0*Ax - 16.0*K1x + 32.0*K2x + 48.0*K3x +	K3z	8.40e-3				
		8.94e-2 = 0	Ax	2.75				
		-32.0*Ax + 16.0*K1x + 32.0*K2x - 48.0*K3x +	Az	2.76				
		8.77e-2 = 0						
		-32.0*Az - 48.0*K1z - 96.0*K2z - 48.0*K3z + 8.77e-						
		2 = 0						
		-32.0*Az + 48.0*K1z - 96.0*K2z + 48.0*K3z +						
		8.70e-2 = 0						
		-32.0*Az $- 16.0*$ K1z $+ 32.0*$ K2z $+ 48.0*$ K3z $+$						
		8.94e-2 = 0						
		-32.0*Az + 16.0*K1z + 32.0*K2z - 48.0*K3z +						
		8.81e-2 = 0						

Table S1: Heisenberg Hamiltonian parameters calculation

			Spin-	
	Atom		Spin-up	down
	Index	Element	charge	charge
	54	Chromium	5.047	0.647
	55	Chromium	5.047	0.647
	56	Chromium	5.047	0.647
	57	Chromium	5.062	0.622
	58	Chromium	5.062	0.622
	59	Chromium	5.062	0.622
	60	Chromium	5.126	0.718
	61	Carbon	1.408	2.837
	62	Carbon	1.408	2.837
Loft Cr2C	63	Carbon	1.408	2.837
electrode	64	Carbon	1.403	2.842
electione	65	Carbon	1.403	2.842
	66	Carbon	1.403	2.842
	67	Carbon	1.429	2.858
	68	Chromium	5.192	0.667
	69	Chromium	5.192	0.667
	70	Chromium	5.192	0.667
	71	Chromium	5.209	0.674
	72	Chromium	5.18	0.686
	73	Chromium	5.18	0.686
	74	Chromium	5.18	0.686
	99	Chromium	5.204	0.647
	100	Chromium	5.193	0.669
	101	Chromium	5.193	0.669
	102	Chromium	5.193	0.669
	103	Chromium	5.18	0.689
	104	Chromium	5.18	0.689
	105	Chromium	5.18	0.689
	106	Carbon	1.433	2.853
	107	Carbon	1.404	2.844
Right	108	Carbon	1.404	2.844
Cr2C	109	Carbon	1.404	2.844
electrode	110	Carbon	1.407	2.836
	111	Carbon	1.407	2.836
	112	Carbon	1.407	2.836
	113	Chromium	5.124	0.72
	114	Chromium	5.063	0.621
	115	Chromium	5.063	0.621
	116	Chromium	5.063	0.621
	117	Chromium	5.046	0.646
	118	Chromium	5.046	0.646
	119	Chromium	5.046	0.646

Table S2: Mulliken population analysis for MTJ with graphene spacer.

	75	Carbon	2.019	2.006
	76	Carbon	2.014	2.008
	77	Carbon	2.014	2.008
	78	Carbon	2.014	2.008
	79	Carbon	2.019	2.007
	80	Carbon	2.019	2.007
	81	Carbon	2.019	2.007
	82	Carbon	2.017	2.008
	83	Carbon	2.017	2.008
	84	Carbon	2.017	2.008
	85	Carbon	2.017	2.008
Graphene	86	Carbon	2.017	2.008
Spacer	87	Carbon	2.017	2.008
	88	Carbon	2.019	2.007
	89	Carbon	2.018	2.007
	90	Carbon	2.018	2.007
	91	Carbon	2.018	2.007
	92	Carbon	2.016	2.007
	93	Carbon	2.016	2.007
	94	Carbon	2.016	2.007
	95	Carbon	2.019	2.007
	96	Carbon	2.019	2.007
	97	Carbon	2.019	2.007
	98	Carbon	2.013	2.009

Table S3: Mulliken population analysis for MTJ with h-BN spacer.

	Index	Element	Spin-up charge	Spin- down charge
	54	Chromium	4.863	0.099
	55	Chromium	4.863	0.099
	56	Chromium	4.863	0.099
	57	Chromium	4.874	0.094
	58	Chromium	4.874	0.094
	59	Chromium	4.874	0.094
	60	Chromium	4.941	0.1
l oft	61	Carbon	1.703	0.046
Left Cr2C	62	Carbon	1.703	0.046
laver	63	Carbon	1.703	0.046
layer	64	Carbon	1.7	0.045
	65	Carbon	1.7	0.045
	66	Carbon	1.7	0.045
	67	Carbon	1.725	0.047
	68	Chromium	4.985	0.104
	69	Chromium	4.985	0.104
	70	Chromium	4.985	0.104
	71	Chromium	4.967	0.11

	72	Chromium	4.967	0.11
	73	Chromium	4.967	0.11
	74	Chromium	5.037	0.104
	99	Chromium	4.976	0.104
	100	Chromium	4.976	0.104
	101	Chromium	4.976	0.104
	102	Chromium	5.025	0.105
	103	Chromium	4.979	0.11
	104	Chromium	4.979	0.11
	105	Chromium	4.979	0.11
	106	Carbon	1.724	0.046
	107	Carbon	1.705	0.046
Right	108	Carbon	1.705	0.046
Cr2C	109	Carbon	1.705	0.046
layer	110	Carbon	1.698	0.045
	111	Carbon	1.698	0.045
	112	Carbon	1.698	0.045
	113	Chromium	4.94	0.101
	114	Chromium	4.877	0.094
	115	Chromium	4.877	0.094
	116	Chromium	4 877	0.094
	117	Chromium	4 861	0.099
	118	Chromium	4.861	0.099
	110	Chromium	4.861	0.000
	75	Boron	1 867	1 796
	75	Nitrogen	2.007	0.012
	70	Nitrogen	2.234	0.013
	70	Nitrogen	2.234	0.013
	70	Boron	1 99	1 797
	79 80	Boron	1.00	1.707
	00	Boron	1.00	1 707
	10	Durun	1.00	1.707
	ŏ۷ م	BUIUN	1.809	1.//8
	83 04	Nitrogen	2.220	0.01
	84	Nitrogen	2.220	0.01
	85	Nitrogen	2.220	0.01
II-BIN Spacor	80	Nitrogen	2.231	0.012
Spacer	8/	Nitrogen	2.231	0.012
	88	Nitrogen	2.231	0.012
	89	Boron	1.874	1.782
	90	Boron	1.874	1.782
	91	Boron	1.8/4	1./82
	92	Boron	1.872	1.774
	93	Boron	1.872	1.774
	94	Boron	1.872	1.774
	95	Nitrogen	2.236	2.218
	96	Nitrogen	2.236	2.218
	97	Nitrogen	2.236	2.218
	98	Boron	1.863	1.769