Supporting Information

Lithium Stabilizes Square Two-Dimensional Metal Sheets: A Computational Exploration

Jie Li^{a,#}, Yu Liu^{a,#}, Linke Yu^a, Haihong Meng^a, Jinxing Gu^b, Fengyu Li^{a,*}

^a School of Physical Science and Technology, Inner Mongolia University, Hohhot,

010021, P.R.China

^b Department of Chemistry, The Institute for Functional Nanomaterials, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931, USA

*Corresponding Author: fengyuli@imu.edu.cn (FL)

#	Equal	contribution	to	this	work
	Lquui	• on the attent		tino	

-		*CO ₂	*COOH/*OCHO	*HCOOH	*HCO
-	Sb ₂ Li-I	0.46	0.19/0.23	/	/
	Bi ₂ Li-I	0.46	0.24/0.27	/	/
	Ag ₂ Li-I	0.46	0.21/0.22	0.30	-0.47
	Au ₂ Li-I	0.46	0.22/0.23	/	/

Table S1. The reaction pathway and the $\Delta ZPE - T\Delta S$ (in eV) of forming the intermediates on the M₂Li-I sheets.

Table S2. Space group (SG), cohesive energy, lattice parameters and bond lengths of the 2D M₂Li sheets. The E_{coh} in parenthesis refer to the square M monolayer. The length data in parenthesis denote the bond length in the M₄Li₂ clusters of D_{4h} symmetry.

	SG	Symmetry	E_{coh} (eV/atom)	a (Å)	b (Å)	М-М (Å)	M–Li (Å)
Al ₂ Li-I	P4/mmm	D^{1}_{4h}	-2.59 (-1.75)	2.69	2.69	2.69 (2.64)	2.92 (2.84)
Ga ₂ Li-I	P4/mmm	D^{1}_{4h}	-2.28 (-1.61)	2.66	2.66	2.66 (2.60)	2.93 (2.79)
In ₂ Li-I	P4/mmm	D^{1}_{4h}	-2.04 (-1.40)	3.12	3.12	3.12 (3.05)	3.00 (3.00)
Tl ₂ Li-I	P4/mmm	D^{1}_{4h}	-1.80 (-1.26)	3.32	3.32	3.32 (3.18)	3.10 (3.06)
Ge ₂ Li-I	P4/mmm	D^{1}_{4h}	-3.40 (-2.83)	2.74	2.74	2.74 (2.57)	2.80 (2.79)
Sn ₂ Li-I	P4/mmm	D^{1}_{4h}	-2.91 (-1.92)	3.09	3.09	3.09 (2.92)	3.03 (2.91)
Pb ₂ Li-I	P4/mmm	D^{1}_{4h}	-2.85 (-2.38)	3.24	3.24	3.24 (3.35)	3.11 (3.06)
Sb ₂ Li-I	P4/mmm	D^{1}_{4h}	-2.46 (-3.40)	3.12	3.12	3.12 (3.05)	3.00 (2.74)
Bi ₂ Li-I	P4/mmm	D^{1}_{4h}	-2.35 (-3.35)	3.26	3.26	3.26 (3.10)	3.11 (2.82)
Cu ₂ Li-I	P4/mmm	D^{1}_{4h}	-2.52 (-1.77)	2.47	2.47	2.47 (2.44)	2.59 (2.44)
Ag ₂ Li-I	P4/mmm	D^{1}_{4h}	-2.25 (-1.32)	2.83	2.83	2.83 (2.84)	2.77 (2.57)
Au ₂ Li-I	P4/mmm	D^{1}_{4h}	-2.69 (-2.04)	2.77	2.77	2.78 (2.84)	2.73 (2.52)
Hg ₂ Li-I	P4/mmm	D^{1}_{4h}	-0.75 (-0.54)	3.10	3.10	3.10 (3.37)	2.92 (2.81)
Sb ₂ Li-II	P21/m	$C^{2}{}_{2h}$	-2.44	3.06	11.21	3.01/3.11	2.95/3.11
Sb ₂ Li-III	Pmmm	$D^{1}{}_{2h}$	-2.41	3.02	3.04	4.94	2.89
Sb ₂ Li-IV	P6mm	C^{1}_{6v}	-2.16	5.15	5.15	2.97	3.01
Sb ₂ Li-V	P6mm	C^{1}_{6v}	-2.14	6.21	6.21	3.11/3.34	2.82
Sb ₂ Li-VI	P4/mmm	D^{1}_{4h}	-1.73	4.88	4.88	3.45	2.44
Bi ₂ Li-II	P21/m	$C^{2}{}_{2h}$	-2.31	3.21	11.81	3.25/3.24	3.22/3.00
Bi ₂ Li-III	Pmmm	$D^{1}{}_{2h}$	-2.26	3.19	3.20	5.03	2.98
Bi ₂ Li-IV	P6mm	C^{1}_{6v}	-2.03	5.36	5.36	3.09	3.13
Bi ₂ Li-V	P6mm	$C^{1}_{6\nu}$	-2.05	6.50	6.50	3.25/3.49	2.91
B ₂ Li-VI	P4/mmm	D^{1}_{4h}	-1.67	5.07	5.07	3.59	2.54
Ag ₂ Li-II	P21/m	C^{2}_{2h}	-2.18	2.80	10.25	2.78/2.80	2.81/2.69
Ag ₂ Li-III	Pmmm	$D^{1}{}_{2h}$	-2.14	2.82	2.71	4.50	2.66
Ag ₂ Li-IV	P6mm	C^{1}_{6v}	-2.03	4.77	4.77	2.76	2.80
Ag ₂ Li-V	P6mm	C^{1}_{6v}	-2.10	5.50	5.50	2.95/2.75	3.35/2.64
Ag ₂ Li-VI	P4/mmm	D^{1}_{4h}	-1.30	4.82	4.82	3.41	2.41
Au ₂ Li-II	P21/m	C^{2}_{2h}	-2.60	2.77	10.19	2.73/2.78	2.61/2.78
Au ₂ Li-III	Pmmm	D^{1}_{2h}	-2.57	2.77	2.72	4.32	2.57
Au ₂ Li-IV	P6mm	C^{1}_{6v}	-2.50	4.68	4.68	2.70	2.74
Au ₂ Li-V	P6mm	C^{1}_{6v}	-2.48	5.43	5.43	2.72/2.98	2.58
Au ₂ Li-VI	P4/mmm	D^{1}_{4h}	-1.88	4.65	4.65	3.29	2.33

	SG	Symmetry	Ecoh (eV/atom)	a (Å)	b (Å)	M–M (Å)
Al	P4/mmm	D^{1}_{4h}	-2.58	2.63	2.63	2.63
Ga	P4/mmm	D^{1}_{4h}	-2.23	2.59	2.59	2.59
In	P4/mmm	D^{1}_{4h}	-1.90	2.96	2.96	2.96
T1	P4/mmm	D^{1}_{4h}	-1.64	3.10	3.10	3.10
Ge	P4/mmm	D^{1}_{4h}	-3.66	2.59	2.59	2.59
Sn	P4/mmm	D^{1}_{4h}	-2.57	2.99	2.99	2.99
Pb	P4/mmm	D^{1}_{4h}	-2.71	3.15	3.15	3.15
Sb	P4/mmm	D^{1}_{4h}	-2.10	2.97	2.97	2.97
Bi	P4/mmm	D^{1}_{4h}	-1.97	3.13	3.13	3.13
Cu	P4/mmm	D^{1}_{4h}	-2.45	2.38	2.38	2.38
Ag	P4/mmm	D^{1}_{4h}	-1.79	2.72	2.72	2.72
Au	P4/mmm	D^{1}_{4h}	-2.43	2.67	2.67	2.67
Hg	P4/mmm	D^{1}_{4h}	-0.07	2.83	3.66	3.66

Table S3. Space group (SG), cohesive energy, lattice parameters and bond lengths of the square M (Al, Ga, In, Tl, Ge, Sn, Pb, Sb, Bi, Cu, Ag, Au, Hg) monolayers.

Table S4. The E_{coh} (in eV per atom) of M₂Li-I sheets and bulk M_mLi_n, space group (SG) of bulk M_mLi_n. Data in parenthesis refer to the E_{coh} of M bulk.

system	E_{coh}	M _m Li _n bulk	SG	E_{coh}
Al ₂ Li-I	-2.59 (-3.52)	Al ₂ Li ₃ ⁱ	R3 m	-2.55
Ga ₂ LI-I	-2.28 (-2.68)	Ga ₂ Li ⁱⁱ	Стст	-2.25
In ₂ Li-I	-2.04 (-2.42)	InLi ₂ ⁱⁱ	Стст	-2.13
Tl ₂ Li-I	-1.80 (-4.08)	T1Li ⁱⁱⁱ	Pm3m	-2.04
Ge ₂ Li-I	-3.40 (-5.21)	GeLi ^{iv}	$I4_1/a$	-2.93
Sn ₂ Li-I	-2.91 (-3.17)	SnLi ^v	<i>P2/m</i>	-3.99
Pb ₂ Li-I	-2.85 (-3.31)	PbLi ^{vi}	Pm3m	-2.71
Sb ₂ Li-I	-2.46 (-2.67)	SbLi ₂ vii	P-62c	-2.54
Bi ₂ Li-I	-2.35 (-2.52)	BiLi ^{viii}	P4/mmm	-2.45
Cu ₂ Li-I	-2.52 (-3.48)			
Ag ₂ Li-I	-2.2 (-2.49)	AgLi ^{ix}	Fm3m	-2.26
Au ₂ Li-I	-2.69 (-2.98)	AuLi ₃ ^x	Fm3m	-2.34
Hg ₂ Li-I	-0.75 (-1.67)	Hg ₃ Li ^{xi}	P6 ₃ /mmc	-0.72
Li bulk	-1.57		-	

ⁱ K.F. Tebbe, H.G. von Schnering, B. Rueter and G. Rabeneck, Zeitschrift fuer Naturforschung. Teil B. Anorganische Chemie, Organische Chemie, 1973, 28, 600.

ⁱⁱ J. Stoehr, W. Mueller and H. Schaefer, Studies in Inorganic Chemistry, 1983, 3, 753.

ⁱⁱⁱ W. Baden, P.C. Schmidt and A. Weiss, Physica Status Solidi, A, 1979, 51, 183.

^{iv} E. Menges, V. Hopf, H. Schaefer and A. Weiss, Zeitschrift fuer Naturforschung, Teil B. Anorganische Chemie, Organische Chemie, 1969, 24, 1351.

^v W. Mueller and H. Schaefer, Zeitschrift fuer Naturforschung, Teil B. Anorganische Chemie, Organische Chemie, 1973, 28, 246.

vi H.N. Nowotny, Zeitschrift fuer Metallkunde, 1941, 33, 388.

vii W. Mueller, Darstellung und Struktur der Phase Li2Sb Zeitschrift fuer Naturforschung, Teil B. Anorganische Chemie, Organische Chemie, 1977, 32, 357-359.

^{viii} E. Zintl and G. Brauer, Zeitchrift fur Elektrochemie, 1935, **41**, 297.

ix R. W. G. Wyckoff, Second edition. Interscience Publishers, New York, New York Note: CsCl structure, cesium chloride structure Crystal Structures, 1963, 1, 85-237.

^x J. Verma, and G. Kienast, Das Verhalten der Alkalimetalle zu Kupfer, Silber und Gold Zeitschrift fuer Anorganische und Allgemeine Chemie, 1961, 310, 143-169.

xi E. Zintl and A. Schneider, Zeitschrift fuer Elektrochemie und Angewandte Physikalische Chemie, 1935, 41, 771.

Table S5. The computed elastic constants (C_{11} , C_{22} , C_{12} , C_{44} , in N/m) of the M₂Li-I monolayers. The mechanically stable M₂Li-I was highlighted in bold.

	<i>C</i> ₁₁	C_{22}	C_{12}	<i>C</i> ₄₄
Al ₂ Li-I	34.83	34.83	-2.19	1.02
Ga ₂ Li-I	22.89	22.89	80.75	-5.97
In ₂ Li-I	-7.82	-7.82	9.68	15.28
Tl ₂ Li-I	28.36	28.36	16.05	8.61
Ge ₂ Li-I	80.83	80.83	15.18	34.41
Sn ₂ Li-I	83.69	83.69	-20.49	27.77
Pb ₂ Li-I	10.28	10.28	-51.91	10.43
Sb ₂ Li-I	71.55	71.55	-17.38	18.26
Bi ₂ Li-I	68.95	68.95	-21.77	3.66
Cu ₂ Li-I	110.49	110.49	14.33	-6.98
Ag ₂ Li-I	72.91	72.91	-2.04	5.96
Au ₂ Li-I	122.32	122.32	10.08	22.05
Hg ₂ Li-I	34.84	34.84	-2.19	1.02

Table S6. The lowest adsorption energies of H, CO₂ (E_{ad} , in eV)) and the free energy change (ΔG , in eV) for forming *COOH and *OCHO on the M₂Li-I (M = Sb, Bi, Ag and Au).

Metal	<i>E_{ad}</i> (H)	$E_{ad}(CO_2)$	$\Delta G_{(*COOH)}$	$\Delta G_{(*OCHO)}$
Sb ₂ Li-I	/	-0.09	2.26	1.87
Bi ₂ Li-I	/	-0.15	1.79	0.75
Ag ₂ Li-I	2.17	-0.23	1.46	0.40
Au ₂ Li-I	/	-0.42	1.74	0.97

Table S7. The adsorption energies of H (E_{ad} , in eV) on the Ag₂Li-I.

_

_

Site	E_{ad}
bridge	2.19
top	2.17
hollow	2.23

Fig. S1 Top and side views of the square M (represented by Ag structure) monolayer, *a* and *b* represent the lattice vectors. Data in parenthesis are the cohesive energies per atom.

Fig. S2 The convex hull diagram of the M_xLi_{1-x} system, the "star" in the figure corresponding to our M_2Li -I (M = Al, Ga, In, Tl, Ge, Sn, Pb, Bi, Sb, Ag, Au and Hg) systems.

Fig. S3 The computed phonon dispersions of the square M monolayers. Data in parenthesis are the cohesive energies per atom.

Fig. S4 The final structures of M_2Li -I monolayers through 5 ps's FPMD simulations at 300 K: Al_2Li -I (a), Tl_2Li -I (b), Ge_2Li -I (c), Sn_2Li -I (d), and Hg_2Li -I (e).

Fig. S5 Two views of the final structures of M₂Li-I monolayers through 5 ps's FPMD simulations: Sb₂Li-I (a), Bi₂Li-I (b), Ag₂Li-I (c) and Au₂Li-I (d) at 300 K; Sb₂Li-I (e), Bi₂Li-I (f), Ag₂Li-I (g) and Au₂Li-I (h) at 500 K; Sb₂Li-I (i), Bi₂Li-I (j) and Au₂Li-I (k) at 800 K; Sb₂Li-I (l) and Au₂Li-I (m) at 1000 K, respectively.

Fig. S6 The computed phonon dispersions of the PSO searched M_2Li sheets. Data in parenthesis are the cohesive energies per atom.

Fig. S7 Mechanical response (δ_y and thickness δ_z) of the Sb₂Li-I (a), Bi₂Li-I (b), and Ag₂Li-I (c) monolayers under the uniaxial strain along the *x* direction (δ_x ranging from -6% to 6%). Mechanical response (δ_y or thickness δ_z) of the half-auxetic Sb₂Li-I (d), Bi₂Li-I (e) and Ag₂Li-I (f) sheets under the uniaxial strain along the *x* direction (δ_x ranging from -3% to 3%).

Fig. S8 Projected density of state (PDOS) considering spin polarization of M_2Li -I monolayers: (a) Sb_2Li -I, (b) Bi_2Li -I, (c) Ag_2Li -I and (d) Au_2Li -I. The Fermi level was assigned at 0 eV.

Fig. S9 Top and side views of the optimized structures of CO_2 adsorbed at different site of the Sb₂Li-I (a), Bi₂Li-I (b), Ag₂Li-I (c) and Au₂Li-I (d). The adsorption energy of CO_2 and the C–O bond lengths were given in the corresponding structure.

Fig. S10 The optimized structures of the intermediates along the optimal CO₂RR route on the Ag₂Li-I.

Fig. S11 The final structures of Ag_2Li -I with water through 5 ps's FPMD simulation at 300 K.