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Figure S1. Schematic illustration of catalyst preparation
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Figure S2. XRD patterns of the samples.
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Figure S3. SEM images and statistical distribution of diameter of the samples: (a, b) CeO2, (c, 

d) FeOx/CeO2, (e, f) PtOy-FeOx/CeO2, and (g, h) PtOy-FeOx/CeO2-H.
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Figure S4. (a) TEM, (b) HR-TEM images, and (c) EDS mapping of PtOy-FeOx/CeO2.
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Figure S5. XRD patterns of PtOy-FeOx/CeO2-H and PtOy-mFeOx/CeO2-H (m=0.01, 0.05, and 

0.2)
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Figure S6. Raman spectra of the samples using 532 nm excitation.

Raman spectrum is a useful tool to detect ceria crystalline changes, such as lattice dilation 

effect with a proportional lower frequency shift from foreign ion doping, oxygen vacancy 

identification. Raman pattern is mainly composed of two peaks from F2g mode (460 cm-1) and 

a vibration caused by oxygen vacancy (580 cm-1), as well as some weak second-order 

vibrations of CeO2 (265，835 and 1185 cm-1)1,2,3
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Figure S7. TEM image of PtOy-FeOx/CeO2-H.
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Figure S8. N2 adsorption desorption isotherms of the samples: (a) PtOy-FeOx/CeO2-H, (b) 

PtOy-FeOx/CeO2, (c) FeOx/CeO2, and (d) CeO2. Inserted figures are the BJH pore size 

distribution curves of samples. 
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Figure S9. Catalytic performances of the samples for the model CO oxidation in 1% CO and 

20% O2 with 79% He as balance gas.
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Figure S10. CO-PROX performance of PtOy-FeOx/CeO2-H in a long time testing. 
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Figure S11. MS signals measured after injecting 36O2 and 28CO into reaction with the samples: 

PtOy-FeOx/CeO2-H (left) and PtOy-FeOx/CeO2 (right) measured at room temperature.
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Figure S12. Core level XPS spectra of samples: (a) Ce 3d, (b) Pt 4f, (c) Fe 2p, and (d) O 1s.
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Figure S13. Survey spectra of samples.
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Figure S14. XANES of the samples.
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Figure S15. (a) H2-TPR and (b) O2-TPD profiles of the given samples. ξ in (a) represents the 

ratio of H2 spillover peak to total hydrogen consumption.



18

Figure S16. Comparison of O2-TPD profiles of the samples: PtOy-FeOx/CeO2-H and PtOy-

mFeOx/CeO2-H (m=0.01, 0.05 and 0.2).
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Figure S17. In situ DRIFTS spectra obtained under CO-PROX conditions (1% CO, 1.25% 

O2 and 50% H2 in He balance) over the samples: (a) PtOy-FeOx/CeO2-H and (b) PtOy-

FeOx/CeO2. The spectra were recorded at a time range of 0-90 min with an interval of 2 min. 
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Figure S18 Temporal evolutions of DRIFTS spectra after reactive gas adsorption on 

PtOy/CeO2. 
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Figure S19. Temporal evolutions of DRIFTS spectra after CO saturation adsorption on 

samples: (a) PtOy/CeO2, (c) PtOy-FeOx/CeO2, (e) PtOy-FeOx/CeO2-H in a continuous flow of 

N2. Temporal evolutions of DRIFTS isotherms after CO saturation adsorption on samples: (b) 

PtOy/CeO2, (d) PtOy-FeOx/CeO2, (f) PtOy-FeOx/CeO2-H in a continuous flow of N2. The 

measured interval is 2 min and time range is 0-30 min.
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Figure S20. CO pulse adsorption profiles of the given samples.
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Table S1. Lattice parameter, surface areas, grain size and stress of samples.

samples a=b=c (Å) BET (m2/g) Grain size (nm)a Stress (%) a

CeO2 5.414(2) 168.6 8.7 0.60

PtOy/CeO2 5.415(9) 161.3 8.1 0.48

FeOx/CeO2 5.410(9) 159.8 8.9 0.60

PtOy-FeOx/CeO2 5.408(3) 149.5 9.6 0.64

PtOy-FeOx/CeO2-H 5.414(1) 128.4 8.9 0.57

a: The grain size and lattice stress were calculated by Williams-Hall theorem using Scherrer 

formula with lattice stress correction. 4 strong diffractions of (111), (200), (220), and (311) 

were chosen to calculate.
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Table S2. Comparison of performance of catalysts reported in reference and PtOy-

FeOx/CeO2-H.

samples

Mass of 

catalyst

(mg)

GHSV

(mL∙gcat
-1∙h-1)

Gas T100 Ref.

PtOy-FeOx/CeO2-H 50 60000
1%CO,1%O2,50%H2

He balance
RT This work

CuCe-Fe 300 16000
1%CO,1%O2,50%H2

He balance
100oC 4

1/10Fe(N)-CuCZ 300 24000
1%CO,1%O2,50%H2

He balance
120oC 5

Pt/NiFeAl-600 50 60000
1%CO,20%O2

He balance
100oC 6

Pt/CeO-S 30 200000
0.4%CO，10%O2

Ar balance
150oC 7

Pt/Fe3O4 50 240000
1500ppmCO,10%O2

N2 balance
150oC 8

CuO/CeO2-

polyhedra
100 24000

1%CO,1.25%O2,50%H2

He balance
90oC 9
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