Supporting Information

Confinement Chemistry of FeO_x Centers for Activating Molecular Oxygen

under Ambient Condition

Bingqi Han, Xinbo Li, Zhibin Geng, Liping Li*, Guangshe Li*

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of

Chemistry, Jilin University, Changchun 130012, P. R. China

e-mail: guangshe@jlu.edu.cn; lipingli@jlu.edu.cn

Content

Figure S1. Schematic illustration of sample preparation	3
Figure S2. XRD patterns of the samples	4
Figure S3. SEM images and diameter distribution of the samples	5
Figure S4. TEM images and EDS mapping of PtO_y -FeO _x /CeO ₂	6
Figure S5. XRD patterns of PtO_y -FeO _x /CeO ₂ -H and PtO_y -mFeO _x /CeO ₂ -H	7
Figure S6. Raman spectra of the samples	8
Figure S7. TEM image of PtO_y -FeO _x /CeO ₂ -H	9
Figure S8. A comparison of N_2 adsorption desorption isotherms of the samples	10
Figure S9. CO oxidation performance of the samples	11
Figure S10 . CO-PROX performance of PtO_y -FeO _x /CeO ₂ -H in a long time testing	12
Figure S11. MS signals measured after injecting ³⁶ O2 and ²⁸ CO into reaction	13
Figure S12. Core level XPS spectra of PtO_y -FeO _x /CeO ₂ -H and control samples	14
Figure S13. Survey spectra of PtO_y -FeO _x /CeO ₂ -H and control samples	15
Figure S14. XANES of PtO _y -FeO _x /CeO ₂ -H and control samples	16
Figure S15. (a) H_2 -TPR and (b) O_2 -TPD profiles of PtO_y -Fe O_x /Ce O_2 -H and control	
samples	17
Figure S16. O_2 -TPD profiles of PtO_y -Fe O_x /Ce O_2 -H and PtO_y -mFe O_x /Ce O_2 -H	18
Figure S17. In situ DRIFTS spectra over the samples PtO_y -FeO _x /CeO ₂ -H and	
PtO_y -FeO _x /CeO ₂ in the range of 1800~4000cm ⁻¹	19
Figure S18. Evolutions of DRIFTS spectra after reactive gas adsorption on PtO_y/CeO_2	20
Figure S19. Temporal evolutions of DRIFTS spectra after CO saturation adsorption on	
PtOy-FeOx/CeO2-H, PtOy/CeO2, and PtOy-FeOx/CeO2	21
Figure S20 . CO pulse adsorption profiles of the samples PtO_y -FeO _x /CeO ₂ -H and control	
samples	22
Table S1. Lattice parameter, surface areas, grain size and stress of the samples	23
Table S2. Comparison of performance of catalysts reported in reference.	
24	
References	25

Figure S1. Schematic illustration of catalyst preparation

Figure S2. XRD patterns of the samples.

Figure S3. SEM images and statistical distribution of diameter of the samples: (a, b) CeO₂, (c, d) FeO_x/CeO₂, (e, f) PtO_y-FeO_x/CeO₂, and (g, h) PtO_y-FeO_x/CeO₂-H.

Figure S4. (a) TEM, (b) HR-TEM images, and (c) EDS mapping of PtO_y-FeO_x/CeO₂.

Figure S5. XRD patterns of PtO_y -FeO_x/CeO₂-H and PtO_y -mFeO_x/CeO₂-H (m=0.01, 0.05, and 0.2)

Figure S6. Raman spectra of the samples using 532 nm excitation.

Raman spectrum is a useful tool to detect ceria crystalline changes, such as lattice dilation effect with a proportional lower frequency shift from foreign ion doping, oxygen vacancy identification. Raman pattern is mainly composed of two peaks from F_{2g} mode (460 cm⁻¹) and a vibration caused by oxygen vacancy (580 cm⁻¹), as well as some weak second-order vibrations of CeO₂ (265, 835 and 1185 cm⁻¹)^{1,2,3}

Figure S7. TEM image of PtO_y-FeO_x/CeO₂-H.

Figure S8. N₂ adsorption desorption isotherms of the samples: (a) PtO_y -FeO_x/CeO₂-H, (b) PtO_y -FeO_x/CeO₂, (c) FeO_x/CeO₂, and (d) CeO₂. Inserted figures are the BJH pore size distribution curves of samples.

Figure S9. Catalytic performances of the samples for the model CO oxidation in 1% CO and 20% O_2 with 79% He as balance gas.

Figure S10. CO-PROX performance of PtO_y-FeO_x/CeO₂-H in a long time testing.

Figure S11. MS signals measured after injecting ${}^{36}O_2$ and ${}^{28}CO$ into reaction with the samples: PtO_y-FeO_x/CeO₂-H (left) and PtO_y-FeO_x/CeO₂ (right) measured at room temperature.

Figure S12. Core level XPS spectra of samples: (a) Ce 3d, (b) Pt 4f, (c) Fe 2p, and (d) O 1s.

Figure S13. Survey spectra of samples.

Figure S14. XANES of the samples.

Figure S15. (a) H₂-TPR and (b) O₂-TPD profiles of the given samples. ξ in (a) represents the ratio of H₂ spillover peak to total hydrogen consumption.

Figure S16. Comparison of O₂-TPD profiles of the samples: PtO_y -FeO_x/CeO₂-H and PtO_y -mFeO_x/CeO₂-H (m=0.01, 0.05 and 0.2).

Figure S17. In situ DRIFTS spectra obtained under CO-PROX conditions (1% CO, 1.25% O2 and 50% H₂ in He balance) over the samples: (a) PtO_y -FeO_x/CeO₂-H and (b) PtO_y -FeO_x/CeO₂. The spectra were recorded at a time range of 0-90 min with an interval of 2 min.

Figure S18 Temporal evolutions of DRIFTS spectra after reactive gas adsorption on PtO_y/CeO_2 .

Figure S19. Temporal evolutions of DRIFTS spectra after CO saturation adsorption on samples: (a) PtO_y/CeO_2 , (c) PtO_y-FeO_x/CeO_2 , (e) PtO_y-FeO_x/CeO_2 -H in a continuous flow of N₂. Temporal evolutions of DRIFTS isotherms after CO saturation adsorption on samples: (b) PtO_y/CeO_2 , (d) PtO_y-FeO_x/CeO_2 , (f) PtO_y-FeO_x/CeO_2 -H in a continuous flow of N₂. The measured interval is 2 min and time range is 0-30 min.

Figure S20. CO pulse adsorption profiles of the given samples.

samples	a=b=c (Å)	BET (m ² /g)	Grain size (nm) ^a	Stress (%) ^a
CeO ₂	5.414(2)	168.6	8.7	0.60
PtOy/CeO2	5.415(9)	161.3	8.1	0.48
FeO _x /CeO ₂	5.410(9)	159.8	8.9	0.60
PtOy-FeOx/CeO2	5.408(3)	149.5	9.6	0.64
PtOy-FeOx/CeO2-H	5.414(1)	128.4	8.9	0.57

Table S1. Lattice parameter, surface areas, grain size and stress of samples.

^a: The grain size and lattice stress were calculated by Williams-Hall theorem using Scherrer formula with lattice stress correction. 4 strong diffractions of (111), (200), (220), and (311) were chosen to calculate.

samples	Mass of catalyst (mg)	GHSV (mL·g _{cat} - ¹ ·h ⁻¹)	Gas	T ₁₀₀	Ref.
PtOy-FeOx/CeO2-H	50	60000	1%CO,1%O ₂ ,50%H ₂ He balance	RT	This work
CuCe-Fe	300	16000	⁻ 1%CO,1%O ₂ ,50%H ₂ He balance	100°C	4
1/10Fe _(N) -CuCZ	300	24000	1%CO,1%O ₂ ,50%H ₂ He balance	120°C	5
Pt/NiFeA1-600	50	60000	$\frac{1\%CO,20\%O_2}{\text{He balance}}$	100°C	6
Pt/CeO-S	30	200000	0.4%CO, 10%O ₂ Ar balance	150°C	7
Pt/Fe ₃ O ₄	50	240000	$1500 \text{ppmCO}, 10\%\text{O}_2$ $N_2 \text{ balance}$	150°C	8
CuO/CeO ₂ - polyhedra	100	24000	1%CO,1.25%O ₂ ,50%H ₂ He balance	90°C	9

Table S2. Comparison of performance of catalysts reported in reference and PtO_{y} -FeO_x/CeO₂-H.

References

(1) R. Jain, A. S. Poyraz, D. P. Gamliel, J. Valla, S. L. Suib and R. Maric, *Appl. Catal., A*, 2015, **507**, 1-13.

(2) W. Lin, A. Herzing, C. Kiely and I. Wachs, J. Phys. Chem. C, 2008, 112, 5942-5951.

(3) D. L. De Faria, S. Venâncio Silva and M. De Oliveira, J. Raman Spectrosc., 1997, 28, 873-878.

(4) J. Lu, J. Wang, Q. Zou, D. He, L. Zhang, Z. Xu, S. He and Y. Luo, *ACS Catal.*, 2019, **9**, 2177-2195.

(5) J. Wang, C. Han, X. Gao, J. Lu, G. Wan, D. He, R. Chen, K. Chen, S. He and Y. Luo, *J. Power Sources*, 2017, **343**, 437-445.

(6) J. Ding, L. Li, Y. Wang, H. Li, M. Yang and G. Li, Nanoscale, 2020, 12, 14882-14894.

(7) L. Nie, D. Mei, H. Xiong, B. Peng, Z. Ren, P. Hernandez Xavier Isidro, A. DeLaRiva,
M. Wang, H. Engelhard Mark, L. Kovarik, K. Datye Abhaya and Y. Wang, *Science*, 2017,
358, 1419-1423.

(8) L. Ma, X. Chen, J. Li, H. Chang and J. W. Schwank, *Catal. Today*, 2020, 355, 539-546.
(9) X. Guo and R. Zhou, *Catal. Sci. Technol.*, 2016, 6, 3862-3871.