Supporting Information

Unusual nanoscale piezoelectricity driven high current generation from self S-defect neutralised few layered MoS₂ nanosheets based flexible nanogenerator

Charu Sharma^{a,b}, Avanish Kumar Srivastava^{a,b}, Manoj Kumar Gupta^{a,b}*

^aCSIR-Advanced Materials and Processes Research Institute, Bhopal, Madhya Pradesh 462026, India

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India

*Corresponding author Fax: +91 755-2457042; +919977360351 (mobile).

E-mail address: <u>mkgupta@ampri.res.in</u>, <u>manojampri@gmail.com</u> (Manoj Kumar Gupta)

Figure S1. Equivalent-circuit diagram of MoS2-PDMS nanocomposite based piezoelectric nanogenerator device.

Figure S2. Output voltage obtained from pristine PDMS based nanogenerator under same vertical compressive force.

Figure S3. Impedance-frequency curve of the MoS₂-PDMS based nanocomposite based nanogenerator

Figure S4. Variation of phase (theta) with applied frequency of the nanogenerator device.

Energy conversion efficiency.

The performance of the piezoelectric nanogenerator with d_{33} and dielectric constant is related to the piezoelectric voltage constant (g_{33}) by following equation

 $V=g_{33}\epsilon E, (1)$

where E is Young's modulus of material and ε is the strain. Also, the d₃₃ is directly proportional to g33 and mathematically the can be expressed as

$$g_{33} = \frac{d_{33}}{\varepsilon_0 K}$$
(2)

Where, ε_0 is free space permittivity and K is the relative dielectric constant of MoS₂ nanosheets based device. Eq.(2) clearly indicates the enhancement in piezoelectric output voltage is due to the high d₃₃, moreover the high d₃₃ is due to the high electric polarisation cause by high with dielectric constant of the MoS₂ nanosheets. It is worth to point out that low dielectric constant of MoS₂-PDMS nanogenerator device is due to the low value of dielectric constant of PDMS (2.5). The average efficiency of energy conversion estimated by dividing output electrical energy (15.4 X 10⁻⁶) with strain energy (0.512 x10⁻⁶J).¹⁻² The efficiency of the few layered flexible MoS₂ based nanogenerator device was calculated and found to be 30.07%.

References

1. C. Chang, V. H. Tran, J. Wang, Y-K Fuh and L. Lin, Nano Lett., 2010, 10, 726-731.

2. H. Li, C. Tian, Z.D. Deng, Appl. Phy. Rev., 2014, 1, 041301.