Supporting Information

Oxidation behavior in layered Fe_nGeTe_2 (n = 3, 4, 5) and $Cr_2Ge_2Te_6$ governed by interlayer coupling

Yu Guo, Yanyan Zhao, Si Zhou*, Jijun Zhao*

Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University

of Technology), Ministry of Education, Dalian 116024, China

*Corresponding authors. Email: sizhou@dlut.edu.cn; zhaojj@dlut.edu.cn

S1. Several atomic configurations for O2 adsorption on FenGeTe2 and Cr2Ge2Te6

Fig. S1. Top and side views of local geometries for other O_2 adsorption sites for layered Fe_nGeTe₂ and Cr₂Ge₂Te₆. The numbers at the bottom indicate the binding energy of O_2 adsorption on the monolayer and bilayer surface, respectively.

S2. Bader charge analysis of Te atoms in the monolayer and bilayer systems

Table. S1. Bader charge (*e*) of Te atoms in the monolayer and bilayer systems. "Te- 1^{st} " and "Te- 2^{nd} " represent the Te atom at the surface and interlayer for the bilayers.

Bader Charge		Fe ₃ GeTe ₂	Fe ₄ GeTe ₂	Fe ₅ GeTe ₂	Cr ₂ Ge ₂ Te ₆
Monolayer	Те	6.25	6.12	6.14	6.35
Dilawar	Te-1 st	6.23	6.10	6.07	6.35
Bhayer	Te-2 nd	6.27	6.14	6.15	6.35

S3. Another reaction pathway of O₂ adsorption on monolayer Fe₄GeTe₂

Fig. S2. Reaction pathway for a physisorbed O_2 molecule to dissociate and chemisorb on the surface of monolayer Fe₄GeTe₂. The black line segments indicate the energy levels of the initial state, transition state, and final state, respectively, with each corresponding atomic structures (top and side views) next to the energy level. The blue numbers give (from left to right) the binding energy of initial state, heat of reaction, activation energy, and binding energy of final state, respectively. Fe, Ge, Te and O atoms are shown in purple, green, orange and red, respectively.

S4. Oxidation behavior of Fe_nGeTe₂ at bulk limit

Fig. S3. Reaction pathway for a physisorbed O_2 molecule to dissociate and chemisorb on the surface of quadrilayer (a) Fe₃GeTe₂, (b) Fe₄GeTe₂ and (c) Fe₅GeTe₂, respectively. The black line segments indicate the energy levels of the initial state, transition state, and final state, respectively, with each corresponding atomic structures (top and side views) next to the energy level. The blue numbers (from left to right) give the binding energy of initial state, heat of reaction, activation energy, and binding energy of final state, respectively. Fe, Ge, Te and O atoms are shown in purple, green, orange and red, respectively.

S5. Reaction pathway of O_2 adsorption on layered Fe_nGeTe_2 and $Cr_2Ge_2Te_6$ using DFT+U method

Fig. S4. Reaction pathway for a physisorbed O_2 molecule to dissociate and chemisorb on the surface of monolayer (left panels) and bilayer (right panels) for (a-b) Fe₃GeTe₂, and (c-d) Cr₂Ge₂Te₆, respectively, by using DFT+U method. Fe, Cr, Ge, Te and O atoms are shown in purple, blue, green, orange and red, respectively.

S6. AIMD simulations of O₂ reaction with monolayer and bilayer Fe₃GeTe₂ at 300 K

Fig. S5. Snapshots of AIMD simulations of O_2 oxidation for (a) monolayer and (b) bilayer Fe₃GeTe₂ at 300 K at $0 \sim 5$ ps.

S7. Interlayer differential charge density of bilayer systems

Fig. S6. LDOS of O atoms for monolayer and bilayer Fe_5GeTe_2 at oxidation transition states from left to right panels, respectively.

S8. Wavefunction norm of monolayer and bilayer Fe_nGeTe_2 during oxidation process

Transition state				Final state			
Down-VB	Down-CB	Up-VB	Up-CB	Down-VB	Down-CB	Up-VB	Up-CB
	Fe₃GeTe	₂ bilayer			Fe ₃ GeTe ₂	bilayer	
	Fe ₄ GeTe	₂ bilayer			Fe ₄ GeTe	₂ bilayer	
Fe₅GeTe₂ bilayer					Fe₅GeTe₂	2 bilayer	

Fig. S7. Side view of the wavefunction norm of spin-up and spin-down VBM and CBM at Γ point with an isosurface value of $1 \times 10^{-5} |e|/Å^3$ for the transition and final states of bilayer Fe_nGeTe₂ during oxidation process. Fe, Ge and Te atoms are shown in purple, green and orange, respectively.

Fig. S8. Side view of the wavefunction norm of spin-up and spin-down VBM and CBM at Γ point with an isosurface value of $1 \times 10^{-5} |e|/Å^3$ for the transition and final states of monolayer Fe_nGeTe₂ during oxidation process. Fe, Ge and Te atoms are shown in purple, green and orange, respectively.

S9. O–O bond length during Fe_nGeTe₂ oxidation process

O-O bond length		Initial	Transition	Final	
	Monolayer	1.23	1.37	2.43	
re ₃ Gere ₂	Bilayer	1.23	1.37	2.59	
Ба СаТа	Monolayer	1.23	1.9	2.56	
Fe_4Ge1e_2	Bilayer	1.23	1.79	2.43	
Ea CaTa	Monolayer	1.25	1.31	2.53	
re ₅ Ge le ₂	Bilayer	1.25	1.32	2.52	

Table S2. O–O bond length (Å) for the oxidized Fe_nGeTe₂

S10. Charge transfer between O atom and Fe_nGeTe₂ surface

Table S3. Charge transfer between O atom and Fe_nGeTe_2 surface at final oxidation state

Charge transfer (<i>e</i>)					
	Monolayer	1.91			
re ₃ Gere ₂	Bilayer	1.89			
E. C.T.	Monolayer	2.42			
re40e1e2	Bilayer	2.25			
Fe5GeTe2	Monolayer	1.84			
	Bilayer	1.80			

S11. Wavefunction norm of monolayer and bilayer Fe_nGeTe_2 and $Cr_2Ge_2Te_6$ with DFT+U method

Down-VB	Down-CB	Up-VB	Up-CB	Down-VB	Down-CB	Up-VB	Up-CB
	Fe ₃ GeTe ₂ I	monolayer		Cr ₂ Ge ₂ Te ₆ monolayer			
Fe ₃ GeTe ₂ bilayer				Cr ₂ Ge ₂ Te ₆ bilayer			

Fig. S9. Side view of the wavefunction norm of spin-up and spin-down VBM and CBM at Γ point with an isosurface value of $1 \times 10^{-5} |e|/Å^3$ for monolayer and bilayer Fe₃GeTe₂ and Cr₂Ge₂Te₆ by using DFT+U method. Fe, Cr, Ge and Te atoms are shown in purple, blue, green and orange, respectively.

S12. Interlayer differential charge density of bilayer systems

Fig. S10. Interlayer differential charge density of bilayer Fe₃GeTe₂, Fe₄GeTe₂, Fe₅GeTe₂ and Cr₂Ge₂Te₆ from side view. Fe, Cr, Ge and Te atoms are shown in purple, blue, green and orange, respectively. The cyan and yellow indicate the electron depletion and accumulation regions, respectively, with isosurface value of $0.0003 |e|/Å^3$.

S13. Several different antiferromagnetic configurations of monolayer systems

Fig. S11. Several different antiferromagnetic configurations for monolayer Fe₃GeTe₂, Fe₄GeTe₂, Fe₅GeTe₂ and Cr₂Ge₂Te₆ from side and top views. The black numbers at the top of each panel represent exchange energy (ΔE in the unit of meV/Fe or Cr atom). Fe, Cr, Ge and Te atoms are shown in purple, blue, green and orange, respectively.

S14. The interlayer distance of bilayer Fe_nGeTe_2 and $Cr_2Ge_2Te_6$ after oxidation

Table S4. The interlayer distance (Å) of bilayer Fe_nGeTe_2 and $Cr_2Ge_2Te_6$ after oxidation at initial and final states.

	Pristine	Initial	Final
Fe ₃ GeTe ₂	2.94	2.90	2.93
Fe ₄ GeTe ₂	3.04	3.02	2.97
Fe ₅ GeTe ₂	3.14	3.13	3.12
Cr ₂ Ge ₂ Te ₆	3.42	3.41	3.39