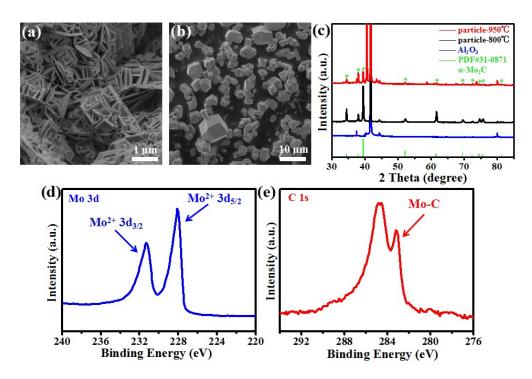
Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2022

$\label{lem:continuous} Low-Temperature\ Growth\ of\ Ultrathin\ and\ Epitaxial\ Mo_2C$ $nanosheets\ via\ the\ Vapor-Liquid-Solid\ Process$


Bin Wang^{a,b,*}, Changbao Zhao^a, Chao Wang^a, Rongtan Li^a, Guohui Zhang^a, Rentao Mu^a, Qiang Fu^a

^a State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China

^b College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013,
China

E-mail address: wangbinlhx@163.com (B. Wang).

^{*}Corresponding author.

Figure S1 (a) and (b) SEM images of the MoC_x crystals grown at 800 and 950 °C, respectively. (c) The corresponding XRD patterns of the MoC_x crystals. (d) and (e) XPS spectra acquired at the Mo 3d and C 1s regions.

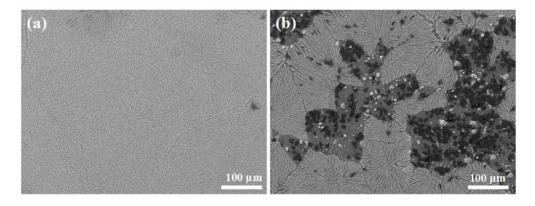
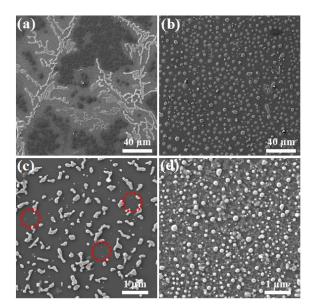



Figure S2 SEM images of the spin-coated Na_2MoO_4 aqueous solution on the $Al_2O_3(0001)$ with (a) or without (b) O_2 plasma.

Figure S3 SEM images of the spin-coated Na_2MoO_4 aqueous solution at 800 °C (a) without annealing, (b) with an annealing process for 20 min. (c) and (d) SEM images of the Mo_2C crystals grown at 1000 and 1100 °C, respectively.