
Supporting Information
Cross-interface energy-filtering effect at organic/inorganic interfaces balances 

the trade-off between thermopower and conductivity
Zizhen Lin1,2, Hao Dang2, Chunyu Zhao2, Yanzheng Du2, Cheng Chi2, Weigang Ma2*, Yinshi Li1* and Xing 

Zhang2

1 Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, 

Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
2 Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering 

Mechanics, Tsinghua University, Beijing, 100084, China
*Corresponding author 

E-mail addresses: maweigang@tsinghua.edu.cn; ysli@mail.xjtu.edu.cn

Supporting Information A Material preparation

The polyaniline/multiwalled nanotube, called as PANI/MWCNT, was synthesized by 

the template-assisted in situ growth method. First, the MWCNT network was 

synthesized by the chemical vapor deposition (CVD) method. The high porosity of 

MWCNT network, about 99 %, provides the broad regions for the polymerization of 

PANI. Second, the MWCNT network was fully immersed in precooled 0.02 M aniline 

solution (50 ml solvent: 40 ml 1 M HCl mixed with 10 ml ethanol, ethanol facilitates 

soakage of the MWCNT network). Then, the precooled ammonium peroxidisulfate 

(APS) solution was slowly added dropwise to the aniline solution and the mixture was 

magnetic stirring for 4 h in an ice bath. Finally, the PANI/MWCNT was washed with 

deionized water and acetone, and dried in vacuum at 60 ℃ for 24 h. The PANI content 

was estimated by identifying the weight variation of MWCNT network before and after 

polymerization. Seven kinds of PANI/MWCNT were fabricated using different 

concentrations of aniline (0.0005 M, 0.001 M, 0.0015 M, 0.002 M, 0.005 M, 0.01 M 

and 0.02 M), in each case aniline and APS were equimolar.

Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2022



Supporting Information B Raman spectra 
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Fig. S1 Raman spectra of the PANI/MWCNT and the PANI-CSA/MWCNT.

Supporting Information C Density of state of MWCNT, PANI and 

PANI/MWCNT
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Fig. S2 The DOS of PANI and MWCNT within PANI/MWCNT. The DOS of PANI/MWCNT is 
also added for comparison.



Supporting Information D Thermal diffusivity and specific heat 
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Fig. S3 (a) Thermal diffusivity and (b) specific heat of the PANI/MWCNT as a function of PANI 
contents. (c) Thermal diffusivity and (d) specific heat of the PANI-CSA/MWCNT as a function of 
temperature.

Supporting Information E Hall carrier mobility 
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Fig. S4 Temperature-dependent Hall carrier mobility of the PANI /MWCNT at 3 T.

Supporting Information F Kang-Snyder data of pristine PANI
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Fig. S5 The Kang-Snyder transport model is used to fit the -  curve of the PANI.𝑆 𝜎


