Supporting Information

Phase Transition from a Nonmagnetic to a Ferromagnetic State in a

Twisted Bilayer Graphene Nanoflex: The Role of Electronic

Pressure on the Magic-Twist

Dharmendra Pant¹ and Ranjit Pati^{1,2*}

¹Department of Physics, Michigan Technological University, Houghton, MI 49931, USA ²Henes Center for Quantum Phenomena, Michigan Technological University, Houghton, Michigan 49931, USA.

*Corresponding author. Email: patir@mtu.edu

Figure S1. Magnetization density in a twisted bilayer graphene nanoflex at $P_e = -0.042$ GPa $(\theta_M = 2.4^\circ)$. (a) Top view, (b) Side view of the magnetization density obtained using DFT with the PBE form of exchange-correlational functional. The red color represents the spin-up states, while the green color represents the spin-down states. The p-orbitals at the boundary contribute to magnetism.

Figure S2. Unstable frontier electronic states in a twisted bilayer graphene nanoflex at $P_e = -0.042$ GPa ($\theta_M = 2.4^\circ$). (a) Highest Occupied and (b) Lowest Unoccupied orbitals are isomorphic and nearly energy degenerate.

Figure S3. Stable broken symmetry ferromagnetic gap states in a twisted bilayer graphene nanoflex at $P_e = -0.042$ GPa ($\theta_M = 2.4^\circ$). (a) Highest Occupied (HO) state for the spin-majority (α) electrons, (b) Lowest Unoccupied (LU) state for the α electrons, (c) HO state for the spin-minority (β) electrons, and (d) LU state for the β electrons.

Figure S4. Density of states in a twisted bilayer graphene nanoflex at $P_e = -0.042$ GPa ($\theta_M = 2.4^\circ$) with and without spin-orbit coupling. The inclusion of spin-orbit coupling does not show any significant shift in the energy spectrum obtained using DFT with PBE exchange-correlation functional.