Supporting Information

Flexible Metal Nano-mesh Strain Sensor with Characteristics of

Spontaneous Functional Recovery after Fracture Damage

Dongyang Zhao, ‡ª Bangbang Nie, ‡ª Guochen Qi, ª Shijiao Li, ª Qichen Zhu, ª Jingjiang Qiu, ª b Yenya Hsu, ª

Yudong Zhang,^a Wen Wang,^a Qidong Zhang^c and Zonhan Wei^{* a b d}

^a School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.

^b Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou 450001, China.

^cZhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China.

^d School of Cyber Science and Engineering & Hanwei Institute of Internet of Things,

Zhengzhou University, Zhengzhou 450001, China.

*Correspondence to: prof.wei@outlook.com

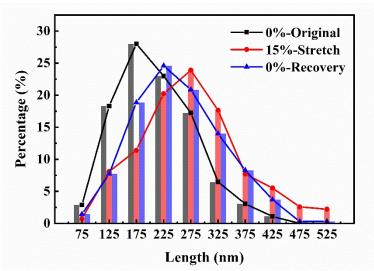
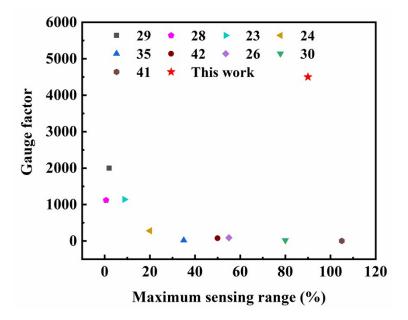



Fig. S1 Nanowire lengths in the original, stretched (15%), and recovered states.

Fig. S2 Comparison of the gauge factor and maximum sensing range of this work with other strain sensors.

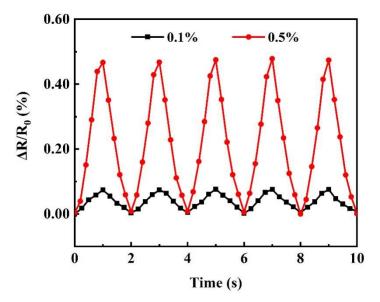
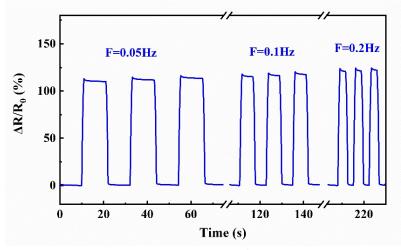
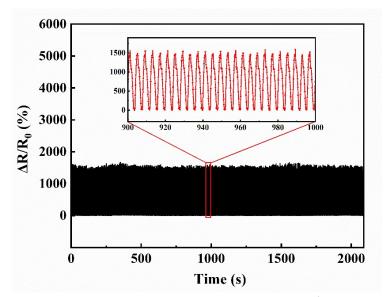




Fig. S3 Fast response of the sensor to cyclic loadings at small strains (0.1% and 0.5%).

Fig. S4 Time-dependent response of $\Delta R/R_0$ at different frequencies.

Fig. S5 $\Delta R/R_0$ on the loading–unloading cycles at a constant strain of 20%. Inset: representative magnified cycles of 900-1,000 s in the marker region.

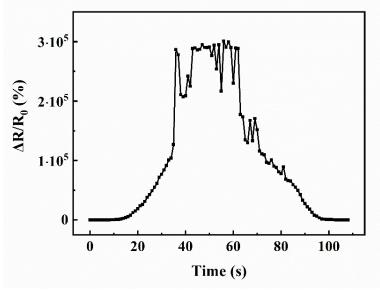


Fig. S6 The sensor resistance variation at overstretch (95%).