Supplementary Information

Assembly of surface-independent polyphenol/liquid gallium composite nanocoatings

Franco Centurion,^a Md. Musfizur Hassan,^a Jianbo Tang,^a Francois-Marie Allioux,^a Sudip Chakraborty,^b Renxun Chen,^b Guangzhao Mao,^a Naresh Kumar,^b Kourosh Kalantar-Zadeh^{*a} and Md. Arifur Rahim^{*a}

^aSchool of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales, Australia

^bSchool of Chemistry, University of New South Wales (UNSW) Sydney, Sydney 2052, Australia.

Correspondence to: k.kalantar-zadeh@unsw.edu.au, ma.rahim@unsw.edu.au

Ga/TA nanoparticles

Fig. S1 SEM image of the Ga/TA nanoparticles showing the spherical shape of the particles.

Fig. S2 Size distribution of the Ga/TA nanoparticles.

Fig. S3 TA-Ti⁴⁺ and TA-Ti⁴⁺/Ga-LM gels with a TA/Ti⁴⁺ molar ratio of 1:5.

EDS comparison

Fig. S4 EDS comparison of the cross-section of TA-Ti⁴⁺/Ga-LM nanocoatings.

Fig. S5 Height profiles of the TA- Ti^{4+}/Ga -LM nanocoatings on glass (a), PS (b), Au (c) and their corresponding thicknesses (d).

Fig. S6 Raman spectrum of the control TA-Ti⁴⁺ nanocoatings without LM nanoparticles.

Fig. S7 XPS survey spectrum of the TA-Ti⁴⁺/Ga-LM nanocoatings.

Fig. S8 Tests for the thermal stability of TA-Ti⁴⁺/Ga-LM nanocoatings. The UV-Vis absorption spectra of TA-Ti⁴⁺/Ga-LM coatings after the thermal treatment (~20 min) at 50 °C (a), 80 °C (b), 100 °C (c), 150 °C (d), 200 °C (e), and 250 °C (f). The controls are also presented for comparison.

Fig. S9 Tests for the chemical stability of the TA- Ti^{4+} /Ga-LM nanocoatings at pH 2 (a), pH 10 (b), ethanol (c), and under sonication in ethanol for 20 min (d).

Fig. S10 The decrease in absorbance at 531 nm of DPPH induced by the TA- Ti^{4+} /Ga-LM and TA- Ti^{4+} nanocoatings on glass substrates.

Fig. S11 *S. aureus* growth (CFU/mL) in the glass surface of the uncoated glass, TA-Ti⁴⁺, and TA-Ti⁴⁺/Ga-LM films. Data presented as the mean \pm standard deviation of the mean (n = 3 independent experiments), and significance was assessed using and one-way analysis of variance (ANOVA) with Dunnett post hoc test, resulting p-values, *p < 0.05, **p < 0.01, ***p < 0.001.

Fig. S12 *E. coli* growth (CFU/mL) in the glass surface of the uncoated glass, TA-Ti⁴⁺, and TA-Ti⁴⁺/Ga-LM films. Data presented as the mean \pm standard deviation of the mean (n = 3 independent experiments), and significance was assessed using and one-way analysis of variance (ANOVA) with Dunnett post hoc test, resulting p-values, *p < 0.05, **p < 0.01, ***p < 0.001.