Supporting Information

Molybdenum-Iron-Cobalt Oxyhydroxide with Rich Oxygen Vacancies for Oxygen Evolution Reaction

Yechuan Zhang,^{ab, ‡} Zhengxiang Gu,^{a, ‡} Jingxiu Bi,^b Yan Jiao^{b,*}

Y. Zhang, Dr. Z. Gu,

Huaxi MR Research Center (HMRRC), Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.

E-mail: zxgu16@scu.edu.cn

Y. Zhang, A/Prof. Jingxiu Bi, A/Prof. Y. Jiao,

School of Chemical Engineering and Advanced Materials, University of Adelaide, SA

5005, Australia.

*E-mail: yan.jiao@adelaide.edu.au

[‡]Y. Z. and Z.G. contributed equally to this work.

*Corresponding author.

Experimental Section

All materials were of analytical grade and used without further purification.

Synthesis of MoO_xCo(OH)_{2-x}

In a typical synthesis, 2 mmol of Na₂MoO₄·2H₂O and 4 mmol of glucose were dissolved into 50 mL of DI water. The mixture was treated with an intense ultrasonication for a few minutes and then transferred to a 1000 mL Teflon stainless steel autoclave. Afterwards, Co(OH)₂ nanowires supported was immersed in the reaction solution. The autoclave was sealed and maintained at 150 °C for 6 h and then cooled to room temperature.

Structure Characterizations

A field emission scanning electron microscopy (FESEM; ZEISS-Merlin), a transmission electron microscopy (TEM, JEOL-2010) with energy dispersive X-ray spectroscopy (EDX), and a high-resolution TEM (HRTEM, JEOL-2010) were used to characterize the morphology and composition of samples. (XRD) curves of samples were recorded on Rigaku at 40 kV and 40 mA, and X-ray photoelectron spectroscopy (XPS) curves are obtained on a PHI Quantera SXM (ULVAC-PHI) instrument to determine the compositions and the valence states of the elements in the samples.

Electrochemical measurements.

All electrochemical measurements were performed on a CHI 760E electrochemical work station with a typical three-electrode setting at room temperature. A graphite rod and a Hg/HgO electrode were selected as a counter and reference electrode, respectively. The self-supporting array grown on carbon cloth (1×1 cm, mass loading ~ 2.5 mg/cm⁻²) was directly used as a working electrode. The electrochemical data were collected in an electrolyte of 1.0 M KOH. The measured potentials via the Hg/HgO electrode were converted to those based on a reversible hydrogen electrode (RHE) by the Nernst equation: E(RHE) = E(Hg/HgO) + 0.0591*pH + 0.098. The overpotential (η) was calculated according to the following equation: $\eta = E(RHE)$ -1.23 V. Linear sweep voltammetry curves for OER were established at a scanning rate of 5 mV/s before 50 cycles of the cyclic voltammetry tests at a scan rate

of 50 mV/s were conducted to obtain stable curves. The Tafel slopes were obtained from the polarization curves by the equation, $\eta = a + b \log (i)$. The chronoamperometry was operated to evaluate the stability under different current densities. Electrochemical impedance spectroscopy (EIS) measurements were performed over a frequency range of 0.1-10⁶ Hz by applying an AC amplitude of 50 mV. All data presented were within 90% iR-correction.

Figures

Figure S1. (a) XRD patterns of different electrocatalysts.

Figure S2. (a) Raman spectra of $MoO_xCo(OH)_{2-x}$, $MoFe_{0.5}O_xCo(OH)_{2-x}$, and $Co(OH)_2$ electrocatalysts.

Figure S3. (a, b) SEM images of Co(OH)₂.

Figure S4. Images of Fourier transform corresponding to Fig 2a and 2c that reveal the lattice spacing of $MoFe_{0.5}O_xCo(OH)_{2-x}$.

Figure S5. (a, b) SEM images of MoFe_{0.5}O_xCo(OH)_{2-x}.

Figure S6. TEM images of (a)Co(OH)₂, (b) MoFeO_xCo(OH)_{2-x}, (c) $MoFe_{0.5}O_xCo(OH)_{2-x}$.

Figure S7. EPR spectra of $MoFeO_xCo(OH)_{2-x}$, $MoFe_{0.25}O_xCo(OH)_{2-x}$, and $MoFe_{0.5}O_xCo(OH)_{2-x}$.

Figure S8. O1s XPS of comparative (a) MoO_xCo(OH)_{2-x} and (b) Co(OH)₂.

Figure S10. Long-term durability test of $Co(OH)_2$ and $MoO_xCo(OH)_{2-x}$ at different potentials for OER.

Figure S11. (a) SEM image and (b) TEM image of $MoFe_{0.5}O_xCo(OH)_{2-x}$ after the stability test.

Figure S12. XRD pattern of MoFe_{0.5}O_xCo(OH)_{2-x} before and after the stability test.

Table	S1.	The	metallic	composition	of	MoO _x C	co(OH)2-	x, MoFe	_{0.5} O _x Co(Ol	H) _{2-x} ,
MoFe ₀	.25 O x	Co(O	H) _{2-x} , and	MoFeO _x Co(OH	_{2-x} , cata	lyst by	ICP-MS.	Regardle	ss of
oxyger	n in tł	nis ch	aracteriza	tion.						

Sample	Co (at.%)	Mo (at.%)	Fe (at.%)
MoO _x Co(OH) _{2-x}	90.13	9.87	-
MoFe _{0.25} O _x Co(OH) _{2-x}	88.46	9.01	2.53
MoFe _{0.5} O _x Co(OH) _{2-x}	86.97	7.51	5.52
MoFeO _x Co(OH) _{2-x}	83.61	6.21	10.18

Table S2. Comparison of the OER activities of the $MoFe_{0.5}O_xCo(OH)_{2-x}$ sample in this work with recently-reported catalysts.

catalysts	Overpotential (mV)	j /(mA cm ⁻²)	Tafel slope (mV dec ^{.1})	Reference
MoFe _{0.5} O _x Co(OH) _{2-x}	223	10	43.6	This work
CoFeV-LDH	242	10	57	S 1
CoMoV-LDH	270	10	106	S2
CoMo hydr(oxy)oxide	377	10	41.88	S3
CoFe-LDH	320	10	53	S4
Fe _x Co _{1-x} OOH	266	10	30.0	S5
Ir-doped NiV(OH)2	260	10	55.3	S 6
NiCo _{16-x} P ₆	290	10	66	S 7
CoP-CeO ₂	224	10	90.3	S 8
Pt-Cu@Cu _x O	250	10	56	S 9
NiCoMo	304	10	56.4	S10

References:

- S1. Y. M. Hu, Z. L. Wang, W. J. Liu, L. Xu, M. L. Guan, Y. P. Huang, Y. Zhao, J. Bao and H. M. Li, Acs Sustain Chem Eng, 2019, 7, 16828-16834.
- S2. J. Bao, Z. L. Wang, J. F. Xie, L. Xu, F. C. Lei, M. L. Guan, Y. Zhao, Y. P. Huang and H. M. Li, *Chem Commun*, 2019, 55, 3521-3524.
- S3. S. Bera, W. J. Lee, E. K. Koh, C. M. Kim, S. Ghosh, Y. Yang and S. H. Kwon, J Phys Chem C, 2020, 124, 16879-16887.
- S4. Q. Zhou, Y. P. Chen, G. Q. Zhao, Y. Lin, Z. W. Yu, X. Xu, X. L. Wang, H. K. Liu, W. P. Sun and S. X. Dou, *Acs Catal*, 2018, 8, 5382.
- S5. S. H. Ye, Z. X. Shi, J. X. Feng, Y. X. Tong and G. R. Li, *Angew Chem Int Edit*, 2018, **57**, 2672-2676.
- S6. S. Li, C. Xi, Y. Z. Jin, D. Y. Wu, J. Q. Wang, T. Liu, H. B. Wang, C. K. Dong, H. Liu, S. A. Kulinich and X. W. Du, *Acs Energy Lett*, 2019, 4, 1823-1829.
- S7. Y. F. Zhao, J. Q. Zhang, Y. H. Xie, B. Sun, J. J. Jiang, W. J. Jiang, S. B. Xi, H. Y. Yang, K. Yan, S. J. Wang, X. Guo, P. Li, Z. J. Han, X. Y. Lu, H. Liu and G. X. Wang, *Nano Lett*, 2021, **21**, 823-832.
- S8. M. Li, X. C. Pan, M. Q. Jiang, Y. F. Zhang, Y. W. Tang and G. T. Fu, *Chem Eng J*, 2020, **395**.
- S9. D. T. Tran, H. T. Le, T. L. L. Doan, N. H. Kim and J. H. Lee, *Nano Energy*, 2019, 59, 216-228.
- S10. S. Y. Hao, L. C. Chen, C. L. Yu, B. Yang, Z. J. Li, Y. Hou, L. C. Lei and X. W. Zhang, Acs Energy Lett, 2019, 4, 952-959.