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Experimental Section 

All materials were of analytical grade and used without further purification. 

Synthesis of MoOxCo(OH)2-x  

In a typical synthesis, 2 mmol of Na2MoO4·2H2O and 4 mmol of glucose were 

dissolved into 50 mL of DI water. The mixture was treated with an intense 

ultrasonication for a few minutes and then transferred to a 1000 mL Teflon stainless 

steel autoclave. Afterwards, Co(OH)2 nanowires supported was immersed in the 

reaction solution. The autoclave was sealed and maintained at 150 °C for 6 h and then 

cooled to room temperature.  

Structure Characterizations  

A field emission scanning electron microscopy (FESEM; ZEISS-Merlin), a 

transmission electron microscopy (TEM, JEOL-2010) with energy dispersive X-ray 

spectroscopy (EDX), and a high-resolution TEM (HRTEM, JEOL-2010) were used to 

characterize the morphology and composition of samples. (XRD) curves of samples 

were recorded on Rigaku at 40 kV and 40 mA, and X-ray photoelectron spectroscopy 

(XPS) curves are obtained on a PHI Quantera SXM (ULVAC-PHI) instrument to 

determine the compositions and the valence states of the elements in the samples. 

Electrochemical measurements. 

All electrochemical measurements were performed on a CHI 760E electrochemical 

work station with a typical three-electrode setting at room temperature. A graphite rod 

and a Hg/HgO electrode were selected as a counter and reference electrode, 

respectively. The self-supporting array grown on carbon cloth (1×1 cm, mass loading 

~ 2.5 mg/cm-2) was directly used as a working electrode. The electrochemical data 

were collected in an electrolyte of 1.0 M KOH. The measured potentials via the 

Hg/HgO electrode were converted to those based on a reversible hydrogen electrode 

(RHE) by the Nernst equation: E(RHE) = E(Hg/HgO) + 0.0591*pH + 0.098. The 

overpotential (η) was calculated according to the following equation: η = 

E(RHE)-1.23 V. Linear sweep voltammetry curves for OER were established at a 

scanning rate of 5 mV/s before 50 cycles of the cyclic voltammetry tests at a scan rate 



of 50 mV/s were conducted to obtain stable curves. The Tafel slopes were obtained 

from the polarization curves by the equation, η = a + b log (i). The 

chronoamperometry was operated to evaluate the stability under different current 

densities. Electrochemical impedance spectroscopy (EIS) measurements were 

performed over a frequency range of 0.1-106 Hz by applying an AC amplitude of 50 

mV. All data presented were within 90% iR-correction. 



Figures 

 

Figure S1. (a) XRD patterns of different electrocatalysts. 



 

Figure S2. (a) Raman spectra of MoOxCo(OH)2-x, MoFe0.5OxCo(OH)2-x, and Co(OH)2 

electrocatalysts. 

 

 

 

 

 

 



 

Figure S3. (a, b) SEM images of Co(OH)2. 

 

Figure S4. Images of Fourier transform corresponding to Fig 2a and 2c that reveal the 

lattice spacing of MoFe0.5OxCo(OH)2-x. 

 

 

Figure S5. (a, b) SEM images of MoFe0.5OxCo(OH)2-x. 



 

Figure S6. TEM images of (a)Co(OH)2, (b) MoFeOxCo(OH)2-x, (c) 

MoFe0.5OxCo(OH)2-x. 

 

 
Figure S7. EPR spectra of MoFeOxCo(OH)2-x, MoFe0.25OxCo(OH)2-x, and 

MoFe0.5OxCo(OH)2-x. 

 

 
Figure S8. O1s XPS of comparative (a) MoOxCo(OH)2-x and (b) Co(OH)2. 



 

 

Figure S9. (a) CV curves of (a) Co(OH)2, (b) MoOxCo(OH)2-x, (c) 

MoFe0.25OxCo(OH)2-x, (d) MoFe0.5OxCo(OH)2-x, (e) MoFeOxCo(OH)2-x 

electrocatalysts at scan rates from 10 to 50 mV s-1. 

 

Figure S10. Long-term durability test of Co(OH)2 and MoOxCo(OH)2-x at different 

potentials for OER.  

 



 

Figure S11. (a) SEM image and (b) TEM image of MoFe0.5OxCo(OH)2-x after the 

stability test. 

 

Figure S12. XRD pattern of MoFe0.5OxCo(OH)2-x before and after the stability test. 



 

Table S1. The metallic composition of MoOxCo(OH)2-x, MoFe0.5OxCo(OH)2-x, 

MoFe0.25OxCo(OH)2-x, and MoFeOxCo(OH)2-x, catalyst by ICP-MS. Regardless of 

oxygen in this characterization. 

Sample   Co (at.%) Mo (at.%)  Fe (at.%)  

MoOxCo(OH)2-x 90.13 9.87 - 

MoFe0.25OxCo(OH)2-x 88.46 9.01 2.53 

MoFe0.5OxCo(OH)2-x 86.97 7.51 5.52 

MoFeOxCo(OH)2-x 83.61 6.21 10.18 

 



Table S2. Comparison of the OER activities of the MoFe0.5OxCo(OH)2-x sample in 

this work with recently-reported catalysts. 

catalysts 
Overpotential 

(mV) 
j /(mA cm-2) 

Tafel slope 

(mV dec-1)  
Reference 

MoFe0.5OxCo(OH)2-x 223 10 43.6 This work 

CoFeV-LDH  242  10 57  S1 

CoMoV-LDH  270  10 106  S2 

CoMo hydr(oxy)oxide  377  10 41.88  S3 

CoFe-LDH  320  10 53  S4 

FexCo1-xOOH  266  10 30.0  S5 

Ir-doped NiV(OH)2  260  10 55.3  S6 

NiCo16–xP6 290 10 66 S7 

CoP-CeO2 224 10 90.3 S8 

Pt-Cu@CuxO 250 10 56 S9 

NiCoMo 304 10 56.4 S10 
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