ELECTRONIC SUPPLEMENTARY INFORMATION

In situ Generation of H₂O₂ Using CaO₂ as Peroxide Storage Depot for Haloperoxidase Mimicry with Surface-Tailored Bi-doped Mesoporous CeO₂ Nanozymes

Eva Pütz, Ina Tutzschky, Hajo Frerichs, and Wolfgang Tremel*

Johannes Gutenberg-Universität Mainz, Department Chemie, Duesbergweg 10-14, D-55128 Mainz, Germany

Electronic supplementary information (ESI) available. See DOI: xx.yyyy/zzzz zzzzs

Keywords: mesoporous ceria, Bi-doping, haloperoxidase enzyme mimic, peroxide storage, surface chemistry

Table of contents

Figure	Title	Page
Fig. S1	SEM image of PES beads at different magnifications.	S2
Fig. S2	IR spectra of the starting materials PES, PVDF and PVP and of PES/PVDF beads after coagulation.	S3
Fig. S3	FTIR spectra of coagulated PES (A) and PVDF (B) composites.	S4
Fig. S4	FTIR spectra of coagulated PES composites with CaO_2 and BiCe (A) and PVDF composites with CaO_2 and BiCe (B).	S5
Fig. S5	UV/Vis spectra of a phenol red assay in the presence of PES, PVDF, PES-BiCe, and PVDF-BiCe composites, PES-CaO ₂ and PVDF-CaO ₂ composites and PES-BiCe-CaO ₂ and PVDF-BiCe-CaO ₂ composites after 0 h and 24 h.	S6

Fig. S1. SEM image of PES beads at different magnifications.

Fig. S2. IR spectra of the starting materials PES, PVDF and PVP and of PES/PVDF beads after coagulation.

Fig. S3. FTIR spectra of coagulated PES (A) and PVDF (B) composites.

Fig. S4. FTIR spectra of coagulated PES composites with CaO_2 and BiCe (A) and PVDF composites with CaO_2 and BiCe (B).

Fig. S5. UV/Vis spectra of a phenol red assay in the presence of PES, PVDF, PES-BiCe (control 1) and PVDF-BiCe composites, PES-CaO₂ and PVDF-CaO₂ composites (control 2) and PES-BiCe-CaO₂ and PVDF-BiCe-CaO₂ composites after 0 h and 24 h.