Supplementary Materials for

Nanoporous hydrogen-bonded organic framework for high

performance photocatalysis

Xiuyan Cheng,^{a,b} Jianling Zhang,^{*a,b} Yufei Sha,^{a,b} Mingzhao Xu,^{a,b} Ran Duan,^c Zhuizhui Su,^{a,b} Jialiang Li,^d Yanyue Wang,^{a,b} Jingyang Hu,^{a,b} Bo Guan,^e and Buxing Han^{a,b}

^aBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China.

^bSchool of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R.China.

^cKey Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China.

^dCenter for Physicochemical Analysis and Measurement, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190, P. R. China

^eBeijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R.China.

*Correspondence to: zhangjl@iccas.ac.cn

Results and Discussion

Fig. S1. Molecular structure of H₄TBAPy.

Fig. S2. N_2 adsorption-desorption isotherm (a) and pore size distribution curve (b) of *p*-PFC-1.

Fig. S3. XRD pattern (a) and TEM image (b) of *o*-PFC-1. Scale bar: 200 nm in (b).

Fig. S4. (a) N_2 adsorption-desorption isotherm and (b) pore size distribution curve of *o*-PFC-1.

Fig. S5. Raman spectra of *p*-PFC-1 and *o*-PFC-1.

Raman spectrum of *p*-PFC-1 exhibits characteristic D and G bands at 1355 and 1591 cm⁻¹, respectively, which is similar to those of graphene nanoribbons.¹ The D band is attributed to the disorder in the carbon materials, while the G band signifies graphitizing feature caused by sp² networks. Accordingly, the intensity ratio of D-band to G-band (I_D/I_G) is indicative of disorder degree. For *p*-PFC-1, I_D/I_G is estimated to be 0.46, which is higher than that of *o*-PFC-1 (0.39), implying higher degree of disorder in *p*-PFC-1.²

Fig. S6. TRFDS spectra of *p*-PFC-1 and *o*-PFC-1.

Fig. S7. ¹H NMR spectrum for photo-oxidative coupling of benzylamine catalyzed by *o*-PFC-1 at 1 h. The characteristic peak of 1,3,5-trioxane (internal standard) is at 5.12 ppm in DMSO-d6.

Fig. S8. Recycle performance of *p*-PFC-1 at 0.5 h using the oxidation of benzylamine as model reaction.

Fig. S9. SEM (a) and TEM (b) images of *p*-PFC-1 after 3 catalysis runs. Scale bars: 400 nm in (a) and 150 nm in (b).

7.5 7.0 6.5 6.0 5.5 5.0 κ 4.5 11 (ppm)

4.0 **2**3.5

3.0

2.5 2.0

1.5 1.0 0.5

0.0

54

88

8.0

9.5 9.0

1.00

Fig. S10. ¹H NMR spectra for photo-oxidative coupling reactions of various benzylamine derivatives catalyzed by p-PFC-1 at 1 h. The characteristic peak of 1,3,5-trioxane (internal standard) is at 5.12 ppm in DMSO-d6.

Fig. S11. Vertical (a) and side (b) views of theoretical models of *p*-PFC-1 used in DFT calculations.

Fig. S12. Vertical (a) and side (b) views of theoretical models of *o*-PFC-1 used in DFT calculations.

Scheme S1. Reaction mechanism for photo-oxidative coupling of benzylamine catalyzed by *p*-PFC-1.

Fig. S13. (a) XRD patterns of PFC-1 synthesized at different pressures. (b) Dependence of the full-width half maximum (FWHM) values of (011) plane on pressure.

The main peaks in XRD patterns of PFC-1 obtained at pressure of 1.53, 3.12, 4.50 and 6.64 MPa match well with those of the simulated XRD of PFC-1, indicating the formation of PFC-1 in presence of compressed CO_2 . Apparently, the FWHM value of (011) peak decreases for the PFC-1 sample synthesized at higher pressure. It means that high pressure CO_2 is favorable for accelerating the crystallization of PFC-1.

Fig. S14. FT-IR spectra of PFC-1 synthesized at 1.53, 3.12, 4.50 and 6.64 MPa, respectively.

FT-IR spectra of PFC-1 samples synthesized at 1.53, 3.12, 4.50 and 6.64 MPa show the characteristic bending vibration of –OH (δ) at 1379, 1379, 1377 and 1379 cm⁻¹, respectively. Simultaneously, the four FT-IR spectra show that all the characteristic stretching vibration of C=O in carboxylic groups are at 1693 cm⁻¹. The two characteristic peaks of above materials are slightly shifted to lower wavenumber compared with those of H₄TBAPy (1383 and 1698 cm⁻¹, respectively). It can be assigned to the formation of hydrogen-bonds between C=O and –OH in associated carboxylic groups of PFC-1, indicating the successful formation of PFC-1 synthesized at 1.53, 3.12, 4.50 and 6.64 MPa, respectively.

Fig. S15. TEM images of PFC-1 synthesized at 1.53 MPa (a), 3.12 MPa (b), 4.50 MPa (c) and 6.64 MPa (d). Scale bars: 100 nm.

Fig. S16. (a) N_2 adsorption-desorption isotherms and (b) pore size distribution curves of PFC-1 synthesized at 1.53, 3.12, 4.50 and 6.64 MPa, respectively.

Fig. S17. Photocatalytic activities of benzylamine conversion of PFC-1 samples synthesized at 1.53, 3.12, 4.50, 6.64 and 8.02 MPa, respectively.

Catalysts	Conditions	Time (h)	Conv. ^[a] (%)	Select. ^[a] (%)	Production rate of <i>N</i> - benzylben zaldimine (mmol g ⁻¹ h ⁻¹)	Ref.
<i>p</i> -PFC-1 (2 mg)	benzylamine (0.8 mmol), CH_3CN (5 mL), air, 25 °C, Xe lamp with a cutoff filter (380 < λ < 780 nm).	1	100	99.7	467.2	This work
Few-layer C ₃ N ₄ (15 mg)	benzylamine (0.5 mmol); 5 mL CH ₃ CN (5 mL); 0.1 MPa O ₂ , visible light (λ > 420 nm), 25 °C.	1	99	99	16.3187	3
SC-HM (semicrystalli ne heptazine- based melon polymer) (5 mg)	benzylamine (0.5 mmol), CH ₃ CN (2 mL), O ₂ (1 atm), Xe lamp (50 W) without filter, 20 °C.	4	99	99	12.2513	4
R-WO ₃ (defect-rich WO ₃) nanosheets (20 mg)	benzylamine (0.1 mmol), CH ₃ CN (4 mL), O ₂ (1 atm), light (λ > 400 nm, 100 mW cm ⁻²), rt.	8	~82	99	0.2539	5
TH550-3 (2D- TiO ₂) (10.0 mg)	benzylamine (0.2 mmol), CH ₃ CN (10.0 mL), O ₂ (0.1 MPa), UV-Vis light (20 mW cm ⁻²), 25 °C.	10	100	86.7	0.8670	6
R-PI	R-PI benzylamine (0.1 mmol), CH₃CN		90.5	98.5	0.1486	7

Table S1. Comparison of the reaction conditions and performances of different catalysts for photocatalytic oxidative coupling of benzylamine.

(conjugated	(5 mL), 1 atm O ₂ , 80 °C, white					
polyimide)	LED (0.3 W cm ⁻²).					
(50 mg)						
NNU-45 (In-	benzylamine (0.2 mmol), O ₂ ,	2.67	99	99	9.1884	8
MOF) (4 mg)	DMSO (1 mL).	2.07				
$\mathrm{Bi}_{24}\mathrm{O}_{31}\mathrm{Br}_{10}$	benzylamine (0.2 mmol), water	12	98	97	0.3961	9
(20 mg)	(1 mL), O ₂ (1 atm), blue light.					
Α μ/Μ - ΤίΟο	benzylamine (0.2 mmol), CH ₃ CN					10
(20 mg)	(5 mL), O ₂ (1 atm), visible-light	8	96	99	0.5940	
(20 mg)	irradiation ($\lambda > 420$ nm).					
Tx-CMP (a						
metalfree						
truxene-	henzylamine (0.5 mmol), CH ₂ CN					
based	(5 mL) Ω_{0} atmosphere in direct	4	>99	91	5.6306	11
conjugated	sunlight					
microporous	Sumgnt.					
polymer) (10						
mg)						
CF-HCP						
(carbazole-						
fluorenone	benzylamine (0.2 mmol), CH ₃ CN					
based porous	(2.0 mL), visible light, green LED	6	91.0 ^[b]	-	3.0333	12
hypercrosslin	lamp (520 nm, 30 W), O ₂ (1 atm).					
ked polymer)						
(5.0 mg)						
mixed phase	benzylamine (0.1 mmol), CH ₃ CN					
2D-MoS ₂ (28	(3 mL), O ₂ balloon, 45 W white	72	99	-	0.2292	13
wt%, 3 mg)	LED, 80 °C.					
MoS ₂ /rGO	benzylamine (0.5 mmol), <i>n</i> -	20	91	97	2.2068	14

composites (5 mg)	octane (2.5 mL), 120 °C, O ₂ (1 atm).					
m-O= C ₃ N ₄ (carbonyl- modified carbon nitride) (10 mg)	benzylamine (0.1 mmol), CH₃CN (5 mL), O₂ balloon (0.1 MPa), light source: λ= 420 nm, rt.	4	>99	>99	1.2251	15
Agl-1000 (50 mg)	benzylamine (0.5 mmol), CH ₃ CN (10 mL), O ₂ (1 atm), 40 °C, light intensity (0.48 W cm ⁻² , 500 W Halogen lamp).	24	95	96	0.1900	16
ATA-BiOCI (2- aminoterepht halic acid (ATA) sensitized BiOCI nanosheet) (100 mg, 0.18 %)	benzylamine (0.1 mmol), CH₃CN (5 mL), 15 W fluorescent lamp (400 < λ < 800 nm), air (1 atm), 25 °C	24	100	100	0.0208	17
ZnIn ₂ S ₄ (8 mg)	benzylamine (0.1 mmol), CH ₂ Cl ₂ (2.0 mL), air.	0.75	99.0	94.0	7.7550	18
Zn-bpydc (10 mg)	benzylamine (0.5 mmol), DMF (5 mL), 300 W Xe lamp (350 < λ < 780 nm), air, 25 °C.	4	99.7	>99	6.2310	19
n-NH ₂ -MIL- 125	benzylamine (0.2 mmol), CH ₃ CN (4 mL), 300 W Xe lamp (350 < $λ$	9	98.5	99.0	1.0630	20

(10 mg)	< 780 nm), air, 25 °C.					
Cd(dcbpy) (10 mg)	benzylamine (0.48 mmol), DMF (5 mL), 300 W Xe lamp (350 < λ < 780 nm), air, 25 °C.		99.1	>99	3.3980	21
PCN-222 (Zr- MOF) (5 mg)	benzylamine (0.1 mmol), 100 mW cm ⁻² Xe lamp (λ ≥ 420 nm), CH ₃ CN (3 mL), air.		100	100	10	22
BiOBr-S-110 (100 mg)	benzylamine (0.1 mmol), CH ₃ CN (5 mL), 15 W Philips lamp (400 < λ < 650 nm), 25 °C, air.		100	100	0.0357	23
TiO ₂ (Degussa P25) (10 mg)	benzylamine (0.1 mmol), 100 W Hg lamp (λ ≥ 300 nm), CH ₃ CN (5 mL), air (1 atm).	9	99	85	0.4675	24
OBBC/ms- BiVO ₄ binuclear complexes (200 mg)	benzylamine (500 uM, 0.1 mmol) solution, (200 mL, tetrahydrofuran (THF): CH ₃ CN = 98:2 v/v) with Cu(hfacac) ₂ (4.0 mm), (λ> 430 nm, 6 mW cm ⁻²), 25 °C under aerated conditions.	2	66.4	> 99	0.0830	25
COF (TFPT- BMTH) (5 mmol%, 5.6 mg)	benzylamine (0.2 mmol), H ₂ O (5 mL), rt, air, blue LED (30 W, λ = 454 nm).	24	99	-	0.7366	26
BiOBr-OV (10 mg)	benzylamine (0.2 mmol), CH₃CN (1 mL), air, 20 °C, Xe lamp with a cutoff filter (λ ≥ 420 nm).	12	96	99	0.7920	27
c-BiOCI benzylamine (0.092 mmol), DMF		1	100	100	9.2	28

(10 mg)	(5 mL), air, 25 °C, 300 W Xe lamp			
	(350 < λ < 780 nm).			

^[a] Conversion (Conv.) and selectivity (Select.) were determined by ¹H NMR.

^[b] The yield of photocatalytic oxidative coupling of benzylamine.

Entry	Scovenger	Quenching	Conv.	Select. (%) ^[b]	
Entry	Scaveriger	group	(%) ^[b]		
1	beta-carotene	¹ O ₂	28.6	99.7	
2	benzoquinone	0 ₂	90.2	99.7	

 Table S2. Effect of scavenger on benzylamine oxidative coupling catalyzed by *p*-PFC

 1.^[a]

^[a]Reaction conditions: 2 mg catalyst, 5 mL CH₃CN, 0.8 mmol benzylamine, 2 equivalent of scavenger, 1 h, 300 W Xe lamp ($380 < \lambda < 780$ nm). ^[b] Conversion (Conv.) and selectivity (Select.) were determined by ¹H NMR.

The conversion of benzylamine at 1 h drops from 100% to 28.6% in the presence of beta-carotene, which suggests that ${}^{1}O_{2}$ exists in the reaction system and serves as an reactive oxygen species (ROS) for the photocatalytic oxidative coupling of benzylamine. With benzoquinone (BQ) as a scavenger to capture O_{2}^{-} , the conversion of benzylamine at 1 h decreases to 90.2%. Obviously, beta-carotene can significantly suppress benzylamine oxidative coupling for *p*-PFC-1. The results indicate that ${}^{1}O_{2}$ is the major ROS for the photo-oxidative coupling reaction of benzylamine for *p*-PFC-1.

References

- Y. Yano, N. Mitoma, K. Matsushima, F. J. Wang, K. Matsui, A. takakur, Y. Miyauchi, H. Ito and K. Itami, *Nature*, 2019, **571**, 387-392.
- Q. Yang, Y. D. Chen, X. G. Duan, S. K. Zhou, Y. Niu, H. Q. Sun, L. J. Zhi and S. B. Wang, *Appl. Catal.*, *B*, 2020, **276**, 119146.
- Y. T. Xiao, G. H. Tian, W. Li, Y. Xie, B. J. Jiang, C. G. Tian, D. Y. Zhao and H. G. Fu, *J. Am. Chem. Soc.*, 2019, **141**, 2508-2515.
- H. Wang, X. S. Sun, D. D. Li, X. D. Zhang, S. C. Chen, W. Shao, Y. P. Tian and Y. Xie, *J. Am. Chem. Soc.*, 2017, **139**, 2468-2473.
- N. Zhang, X. Y. Li, H. C. Ye, S. M. Chen, H. X. Ju, D. B. Liu, Y. Lin, W. Ye, C. M. Wang, Q. Xu, J. F. Zhu, L. Song, J. Jiang and Y. J. Xiong, *J. Am. Chem. Soc.*, 2016, **138**, 8928-8935.
- Q. F. Chen, H. Wang, C. C. Wang, R. F. Guan, R. Duan, Y. F. Fang and X. Hu, *Appl. Catal., B*, 2020, **262**, 118258.
- P. Kong, H. Tan, T. Y. Lei, J. Wang, W. J. Yan, R. Y. Wang, E. R. Waclawik, Z. F. Zheng and Z. Li, *Appl. Catal., B*, 2020, **272**, 118964.
- H. X. Wei, Z. F. Guo, X. Liang, P. Q. Chen, H. Liu and H. Z. Xing, ACS Appl. Mater. Interfaces, 2019, 11, 3016-3023.
- W. Zhao, C. X. Yang, X. Zhang, Y. Deng, C. Q. Han, Z. Y. Ma, L. Wang and L. Q. Ye, *ChemSusChem*, 2020, **13**, 116-120.
- 10. J. L. Yang and C.-Y. Mou, Appl. Catal., B, 2018, 231, 283-291.
- V. R. Battula, H. Singh, S. Kumar, I. Bala, S. K. Pal and K. Kailasam, ACS Catal., 2018, 8, 6751-6759.
- Y. F. Zhi, K. Li, H. Xia, M. Xue, Y. Mu and X. M. Liu, *J. Mater. Chem. A*, 2017, 5, 8697-8704.
- 13. Y. R. Girish, R. Biswas and M. De, Chem. Eur. J., 2018, 24, 13871-13878.
- 14. M. M. Wang, H. H. Wu, C. R. Shen, S. P. Luo, D. Wang, L. He, C. G. Xia and G. L. Zhu, *ChemCatChem*, 2019, **11**, 1935-1942.
- 15. J.-J. Zhang, J.-M. Ge, H.-H. Wang, X. Wei, X.-H. Li and J.-S. Chen,

ChemCatChem, 2016, 8, 3441-3445.

- Z. Zheng, C. Chen, A. Bo, F. S. Zavahir, E. R. Waclawik, J. Zhao, D. Yang and H. Zhu, *ChemCatChem*, 2014, 6, 1210-1214.
- A. J. Han, J. L. Sun, H. W. Zhang, G. K. Chuah and S. Jaenicke, *ChemCatChem*, 2019, **11**, 6425-6430.
- 18. L. Ye and Z. H. Li, *ChemCatChem*, 2014, **6**, 2540-2543.
- 19. Y. F. Sha, J. L. Zhang, D. X. Tan, F. Y. Zhang, X. Y. Cheng, X. N. Tan, B. X. Zhang, B. X. Han, L. R. Zheng and J. L. Zhang, *Chem. Commun.*, 2020, **56**, 10754-10757.
- X. N. Tan, J. L. Zhang, J. B. Shi, X. Y. Cheng, D. X. Tan, B. X. Zhang, L. F. Liu, F. Y. Zhang, B. X. Han and L. R. Zheng, *Sustainable Energy Fuels*, 2020, 4, 2823-2830.
- J. B. Shi, J. L. Zhang, T. L. Liang, D. X. Tan, X. N. Tan, Q. Wan, X. Y. Cheng, B.
 X. Zhang, B. X. Han, L. F. Liu, F. Y. Zhang and G. Chen, *ACS Appl. Mater. Interfaces*, 2019, **11**, 30953-30958.
- 22. C. Y. Xu, H. Liu, D. D. Li, J.-H. Su and H.-L. Jiang, *Chem. Sci.*, 2018, **9**, 3152-3158.
- 23. A. J. Han, H. W. Zhang, G.-K. Chuah and S. Jaenicke, *Appl. Catal., B*, 2017, **219**, 269-275.
- 24. X. J. Lang, H. W. Ji, C. C. Chen, W. H. Ma and J. C. Zhao, *Angew. Chem., Int. Ed.*, 2011, **50**, 3934-3937.
- 25. S. I. Naya, T. Niwa, R. Negishi, H. Kobayashi and H. Tada, *Angew. Chem., Int. Ed.*, 2014, **126**, 14114-14117.
- 26. Z. Q. Liu, Q. Su, P. Y. Ju, X. D. Li, G. H. Li, Q. L. Wu and B. Yang, *Chem. Commun.*, 2020, **56**, 766-769.
- 27. H. Wang, D. Y. Yong, S. C. Chen, S. L. Jiang, X. D. Zhang, W. Shao, Q. Zhang,
 W. S. Yan, B. C. Pan and Y. Xie, *J. Am. Chem. Soc.*, 2018, **140**, 1760-1766.
- 28. B. X. Zhang, J. L. Zhang, R. Duan, Q. Wan, X. N. Tan, Z. Z. Su, B. X. Han, L. R. Zheng and G. Mo, *Nano Energy*, 2020, **78**, 105340.