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Magnetic Properties Measurement Results 

The anomalous Hall resistance of ferrimagnetic (Co,Fe)1-x(Gd,Tb)x films with different 

compositions are measured at room temperature (300K). As shown in Fig. S1, all these 

ferrimagnetic films show strong perpendicular magnetic anisotropy. Here, the change of 

RAH sign corresponds to the transition from being TM dominated to being RE dominated. 

 

Fig. S1. Anomalous Hall resistance of  ferrimagnets (Fe,Co)1-x(Gd,Tb)x alloys with varying 

chemical compositions. All these measurements are performed at room temperature.  
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The perpendicular magnetic hysteresis loop of the selected ferrimagnetic samples is also 

measured.  

Fig. S2. Saturation magnetization measured by using vibrating sample magnetometry at 

room temperature (300K). 

 

 

Micromagnetic Simulation Details 

Micromagnetic simulations are performed by numerically solving the following coupled 

equations of motion in the presence of the spin-orbit torque: 

𝜌�̇� = 𝒇𝑚 × 𝒏 + 𝛼(𝜌𝒏 × �̇� + 𝜎𝒏 × �̇�) + 𝑢2𝒏 × (𝒑 × 𝒏),                   (S1) 

𝜌�̇� + 𝜎�̇� = 𝒇𝑚 × 𝒎 + 𝒇𝑛 × 𝒏 + 𝛼𝜌𝒏 × �̇� + 𝑢1𝒏 × (𝒑 × 𝒏),               (S2) 

where  𝒎 =  (𝒎𝟏 + 𝒎𝟐)/2  and 𝒏 = (𝒎𝟏 − 𝒎𝟐)/2  with 𝒎𝒊  is the local unit 

magnetization for the sublattice i, respectively,  𝜌 = 𝑀1 𝛾1⁄ + 𝑀2 𝛾2⁄ , 𝜎 = 𝑀1 𝛾1⁄ −

𝑀2 𝛾2⁄ , 𝑢1 = 𝛽1 + 𝛽2 , 𝑢2 = 𝛽1 − 𝛽2  with 𝛽𝑖 = 𝜇𝐵𝜃SH𝑗 𝛾𝑖𝑒𝑡𝑧⁄ , α is the Gilbert damping 

constant and 𝒑 is the spin polarization direction. 𝑀𝑖 and 𝛾𝑖  are the saturation magnetization 

and the gyromagnetic ratio for the sublattice i, respectively,  j is the current density, 𝜇𝐵 is 

the Bohr magneton, 𝜃SH is the spin Hall angle of the spin current, e is the electron charge 

and tz is the thickness of the film. 𝒇𝑚 = −
𝛿𝜀

𝜇0𝛿𝒎
 and 𝒇𝑛 = −

𝛿𝜀

𝜇0𝛿𝒏
 are the effective fields 
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induced by various interactions within the system, such as the exchange interaction, DMI 

and the perpendicular magnetic anisotropy. Here, the total energy density in the continuum 

approximation can be written as 

𝜀 =
𝜆

2
𝒎2 +

𝐴

2
(𝜕𝑥𝒏)2 −

𝐾

2
(𝒏 ∙ 𝒆𝑧)2 +

𝐷

2
𝒆𝑦 ∙ (𝒏 × 𝜕𝑥𝒏) − 𝜇0𝑀𝑠𝑯 ∙ 𝒏,        (S3) 

where λ and A are the homogeneous and inhomogeneous exchange constants, respectively. 

K is the perpendicular magnetic anisotropy constant. D denotes the interfacial DMI. MS is 

the total magnetization and H is the external magnetic field. 

 

 

Theoretical Approach Details  

Substituting 𝒇𝑚 = −
𝜆

𝜇0
𝒎 into Eq. (S1) and (S2), one can obtain the closed equation in 

terms of the Néel vector n, and 𝒇𝒏 

𝜇0𝜌2(1 + 𝛼2)

𝜆
𝒏 × (𝒏 × �̈�) = 𝜎𝒏 × �̇� + 𝛼𝜌�̇� + 𝑢1𝒑 × 𝒏 

−𝒏 × (𝒇𝒏 × 𝒏) −
𝜇0𝑢2𝜌

𝜆
𝒏 × (𝒑 × �̇�).                                   (S4) 

We use the collective coordinate approach proposed by A.A. Thiele [S1] to derive the 

steady velocity of a domain wall. Here, Walker ansatz [S2] is used to describe the domain 

wall profile, i.e., 𝒏(𝑥, 𝑡) = (sin𝜃cos𝜙, sin𝜃sin𝜙, cos𝜃) , where 𝜃 = 2arctan{exp[(𝑥 −

𝑟)/Δ]} and Δ  is the DW width. Taking the scalar product of Eq. (S4) with 𝜕𝑟𝒏  and 

integrating over the whole film, we can obtain the following motion equations 

𝜇0𝜌2(1+𝛼2)

𝜆
ℳ�̈� = −2𝜎�̇� − 𝛼𝜌ℳ�̇� +

2𝑀s𝐻𝑧

𝜇0
+ 𝜋𝑢1cos𝜙,                     (S5) 

Here, 𝒑  is set to be 𝒆𝑦  and  ℳ = ∫(𝜕𝑟𝒏 ∙ 𝜕𝑟𝒏)𝑑𝑥 ≈
2

∆
 is determined by the magnetic 

structure in a DW. For a steady motion under the Walker breakdown, DW does not precess 

so that �̇� remains 0, and �̈� should also be zero. Therefore, the steady velocity of the Néel 

wall [S3,S4] is given as 

𝑣 = �̇� =
1

𝛼𝜌ℳ
(

2𝑀s

𝜇0
𝐻𝑧 + 𝜋𝑢1cos𝜙) ≈

∆

2𝛼𝜌
(

2𝑀s

𝜇0
𝐻𝑧 + 𝜋𝑢1cos𝜙).              (S6) 



Micromagnetic Simulation Results of the DW Motion Driven by the Current Pulse 

with a Perpendicular Field (Hz) 

 

Fig. S3. Micromagnetic simulation snapshots of the domain configurations driven by (a) 

the different perpendicular fields (Hz) with a current pulse at a fixed density. (b) the fixed 

perpendicular fields with a current pulse at different densities. The DW motion is along the 

x-direction. Here, a 1000-nm-long ferrimagnetic nanotrack is considered with the 

parameters: λ = 96 MJ/m3, A = 6 pJ/m, D = -0.35 mJ/m2, K = 26 kJ/m3, M1 = 150 kA/m, 

M2 = 135 kA/m, Ms = M1 – M2 = 15 kA/m, γ1 = 2.211 × 105 m/(A·s), γ2 = 1.1 γ1, α = 0.05. 

 

Micromagnetic Simulation Results of the DW Motion Driven by the Current Pulse 

with an In-plane Field (Hx) 

Fig. S4. Micromagnetic simulation snapshots of the domain configurations driven by 

different in-plane fields (Hx) with current pulses at a fixed density. λ = 96 MJ/m3, A = 6 

pJ/m, D = -0.1 mJ/m2, K = 26 kJ/m3, M1 = 150 kA/m, M2 = 135 kA/m, Ms = M1 – M2 = 15 

kA/m, γ1 = 2.211 × 105 m/(A·s), γ2 = 1.1 γ1, α = 0.05. 
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