Supplementary Information

SUPPLEMENTARY INFORMATION

Competition between reverse water gas shift reaction and methanol synthesis from CO₂: influence of copper particle size

Laura Barberis¹, Amir H. Hakimioun², Philipp Plessow², Nienke L. Visser¹, Joseph A. Stewart³, Bart D. Vandegehuchte³, Felix Studt^{2,4} and Petra E. de Jongh^{1*}

¹ Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.

² Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany.

³ TotalEnergies OneTech Belgium, B-7181 Seneffe, Belgium.

⁴ Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany.

*Corresponding author: P.E.deJongh@uu.nl

Table of contents

Section S1: Catalyst Synthesis and structural properties Section S2: Catalytic performance Section S3: DFT calculations

Section S1: Catalyst Synthesis and structural properties

For a typical impregnation, 1.5 g pristine graphene nanoplates (GNP500) were dried at 170 °C under dynamic vacuum for 2 hours. The vacuum was partially released and impregnated directly afterwards with a 95% pore-filling amount of precursor solution (1-3 M) consisting of $Cu(NO_3)_2 \cdot 3H_2O$ (Acros Organics, ≥99% purity) in 0.1M HNO₃ (Merck, 65% in water). The solution was added dropwise under magnetic stirring. After the addition, the powder was dried at room temperature for 24 hours under dynamic vacuum. To avoid exposure to air, the dried impregnated powder was stored in an Ar-filled glovebox (Mbraun Lab Star Glove Box supplied with pure 5.5 grade Argon, <1 ppm O₂, <1 ppm H₂O). The dried sample, loaded in a plug-flow reactor, was treated following the parameters reported in Table S1. The heat treatment was performed under N₂ flow (100 mL min⁻¹ g⁻¹), while the reduction step was performed under 10% H₂/N₂ or 20% H₂/N₂ flow (100 mL min⁻¹ g⁻¹). After allowing cooling down to room temperature, the obtained sample was transferred to an Ar-filled glovebox. Finally, after characterization of the metallic phase, the catalyst was slowly passivated by exposure to air. The catalysts were pressed and sieved to a grain size of 75-150 µm.

				Fresh Catalysts		Activated catalysts			Used catalysts	
	Cu	Т _{нт}	T _R		(nm)		(nm)		(nm)	
Name	loading	(° C) ^b	(°C) ^b	d _{Cu} 0	$d_s \pm \sigma_{ds}{}^d$	d _{Cu} 0	$d_{s}\pm\sigma_{ds}{}^{d}$	d _{Cu} 0 ^C	$d_s\pm \sigma_{ds}{}^d$	
	(**1. 78)			с		с				
4.7_Cu/C	5.2	-	250	-	3.9 ± 0.9	-	4.7 ± 1.2	-	4.9 ± 1.3	
5.8_Cu/C	9.9	250	200	-	4.3 ± 1.0	-	5.8 ± 1.6	-	5.6 ± 1.5	
11.2_Cu/C	9.9	-	250	7.5	8.8 ± 2.6	7.8	11.2 ± 3.6	7.6	11.9 ± 3.7	
12.8_Cu/C	9.9	300	200	9.6	8.8 ± 2.8	8	12.8 ± 4.1	7.5	13.3 ± 4.2	
19.4_Cu/C	14.1	260	200	12.4	18.0 ± 6.1	16.8	19.4 ± 6.4	16.2	21.2 ± 7.1	

Table S1 (a) Nominal copper weight loading. (b) Temperatures adopted for the heat treatment (T_{HT}) and the reduction (T_R) steps during the synthesis of the catalysts. Surface-averaged Cu particle sizes (in nm) of Cu/C catalysts in the fresh, activated and used state determined by (c) XRD and (d) TEM .

Figure S1 Transmission electron micrographs with corresponding particle size distributions of the Cu/C catalysts in the fresh (a, d, g, j, m), activated (b, e, h, k, n) and used (c, f, I, I, o) state.

Figure S2 Powder X-ray diffractograms of Cu/C catalysts in the fresh (a) and used (b) state. Diffractograms normalized to the intensity of the carbon (002) diffraction peak at 30.9° 29 and vertically stacked with individual offset.

Section S2: Catalytic performance

The activity of the catalyst was given as CO_2 conversion (X_{CO2}), copper-time yield (CTY) and turnover frequency (TOF). The CO₂ conversion was calculated by the difference in CO₂/Ar ratio between chromatograms taken during reaction through a catalyst-filled reactor and chromatograms taken during reaction through a SiC-filled reference reactor. The TOF was based on CTY and the number of copper surface atoms, according to the equation: CTY*M_{Cu}/D_{Cu}. Where CTY is expressed in mol_{CO2} g_{Cu}⁻¹ s⁻¹, M_{Cu} is the molar mass of Cu and D_{Cu} is the dispersion of surface Cu atoms. The value of D_{Cu} was calculated as $D_{Cu}=6^{*}V_{Cu}/A_{Cu}^{*}$ ds. Therefore, considering the molar volume (V_m) of 7.09^{*}10²¹ nm³, the molar area of the particles (A_m) of 4.10*10²² nm² and mean diameter (d_s) of the activated catalyst, as determined by TEM.

The value of the apparent activation energy (E_a) in the Arrhenius model was obtained from the slope of the linear fit through the $ln(CTY (mmol_{CO2} g_{Cu}^{-1} s^{-1}))$. The pre-exponential factor (A) was obtained in the Arrhenius model from the intercept of the linear fit through the In(surface-normalized CTY $(\text{mmol}_{\text{CO2}} \text{ m}^2_{\text{Cu}}^{-1} \text{ s}^{-1})).$

$$S_i = 100 * C_i / \Sigma$$

The selectivity to methanol or CO was defined as

 $\sum_{i=1}^{n * C_i}$ with C_i as the concentration of the product i in the effluent gas mixture and n the corresponding carbon number. The TOF_{MeOH} and TOF_{CO} were based on the MeOH and CO outflows and the number of copper surface atoms, using the ds of the activated catalysts (determined by TEM measurements). The values of the apparent activation energy (E_a) in the Arrhenius model for MeOH and CO were obtained from the slope of the linear fit through the In(CTY (mmol_{Product} g_{Cu}⁻¹ s⁻¹)). All calculations were performed considering the data at the end of each isothermal step in order to evaluate the catalysts activity and selectivity under steady-state

conditions.

Figure S3 CO₂ TOF as function of Cu particle size at temperature between 200°C and 260°C for the series of Cu/C catalysts. Lines are drawn to guide the eye. Reaction conditions: 40 bar(g), 600 mL min⁻¹ g_{Cu}^{-1} , H₂/CO₂/He = 67.5/22.5/10 vol%.

Figure S4 CO₂ conversion as a function of temperature for the Cu/C catalysts with different copper particle size. Equilibrium CO₂ conversion has been reported as well. Reaction conditions: 40 bar(g), 600 mL min⁻¹ g_{Cu} -¹, H_2 /CO₂/He = 67.5/22.5/10 vol%.

Figure S5 Comparison of CO₂ hydrogenation TOF of this work (yellow symbols) and values reported in literature.

 Table S2 Experimental parameter with corresponding literature references for the data reported in Figure

 S5.

Catalyist	T (°C)	bar	H ₂ /CO ₂ ratio	Reference
Cu(0.5-15 wt.%)/ZnO	180	7	9	1
Cu/ZnO/Al ₂ O ₃	230	30	3	2
Cu/MgO				
Cu(111)	230	30	3	2,3
Poly-Cu	230			2,4
Cu(5 wt.%)/SiO ₂	220	30	3	5
Cu(5 wt.%)/Al ₂ O ₃			Ŭ	
Cu/SiO ₂	230	25	3	6
Cu/SiO ₂	225-275	7,2	3.3	7
Cu/SiO ₂	260	8	3	8

Figure S6 (a) Arrhenius plot with the rate expressed as weight-normalized copper time yield for the whole series of Cu/C catalysts. (b) Apparent activation energy (E_a). Error bars were obtained from the linear fit of the Arrhenius plot. The error on the average E_a was calculated from the standard deviation of the mean with a 95% confidence interval. Reaction conditions: 40 bar(g), 600 mL min⁻¹ g_{Cu}⁻¹, H₂/CO₂/He = 67.5/22.5/10 vol%.

Figure S7 Arrhenius plot (a) for MeOH and (b) CO with the rate expressed as weight-normalized copper time yield for the whole series of Cu/C catalysts.

Name	Ea CO ₂ (kJ mol ⁻¹)	Ea CH ₃ OH (kJ mol ⁻¹)	Ea CO (kJ mol ⁻¹)
4.7_Cu/C	67 ± 1	55 ± 10	108 ± 3
5.8_Cu/C	80 ± 7	60 ± 9	123 ± 8
11.2_Cu/C	67 ± 2	61 ± 10	116 ± 6
12.8_Cu/C	73 ± 3	63 ± 14	115 ± 7
19.4_Cu/C	83 ± 3	76 ± 9	126 ± 10
Average	74 ± 7	63 ± 7	118 ± 6

Table S3 Apparent activation energy for CO₂ conversion, CH₃OH and CO formation.

Section S3: DFT calculations

Based on the computed electronic energies, reaction energies and free energies were calculated at 503 K and 1 bar reference pressure using the results of published calculations.[2] Based on the data on *HCOO/Cu(211) in the supporting information of ref [2], we obtain the following energy differences for the formation of *CHOO/Cu(211) from $CO_2(g)$ and $H_2(g)$: Correction to DFT-energies to improve gas-phase energetics (-0.455 eV), ZPVE contribution (0.169 eV) and finally the Gibbs free energy contribution, including ZPVE (1.238 eV). Based on these contributions, corrected energies and Gibbs free energies for the formation of formate were obtained for all facets by adding -0.286 eV (E) and - 0.783 eV (G) to the electronic reaction energies.

Table S4. Unit cell sizes, coverages of different adsorbates on slabs and k-point grids of each calculated systems are depicted.

	НСОО				cis-COOH			CO		
Surfaces	Unit cell	Coverage (ML)	k-point sampling	Unit cell	Coverage (ML)	k-point sampling	Unit cell	Coverage (ML)	k-point sampling	
	(4×4)	0.12	3×3×1	(4×4) (3×3)	0.12 0.22	3×3×1 4×4×1	(3×3)	0.11	4×4×1	
	(3×3)	0.22	4×4×1	(2×2)	0.5	6×6×1	(2×2)	0.25	6×6×1	
Cu(100)	(2×2)	0.5	6×6×1	(3×3) 3×COOH	0.66	4×4×1	(2×2) 2×CO	0.5	6×6×1	
	(2×3)	0.66	4×6×1	(2×3) 2×COOH	0.66	4×6×1	-	-	-	
	(2×2) 2×HCOO	1	6×6×1	(2×2) 2×COOH	1	6×6×1	(1×1)	1	12×12×1	
	(4×4)	0.12	3×3×1	(4×4)	0.12	3×3×1	(3×3)	0.11	4×4×1	
	(3×3)	0.22	4×4×1	(3×3)	0.22	4×4×1	(2×2)	0.25	6×6×1	
Cu(110)	(2×4) 2×HCOO	0.5	6×3×1	(2×4) 2×COOH	0.5	6×3×1	(2×2) 2×CO	0.5	6×6×1	
	(2×2) 2×HCOO	1	6×6×1	(2×2) 2×COOH	1	6×6×1	(1×1)	1	12×12×1	
	(4×4)	0.12	3×3×1	(4×4)	0.12	3×3×1	(2			
	(3×3)	0.22	4×4×1	(3×3)	0.22	4×4×1	(3×3)	0.11	4×4×1	
0(111)	(2×2)	0.5	6×6×1	(2×2)	0.5	6×6×1	(3×3) 2×CO	0.22	4×4×1	
Cu(111)	(3×2) 2×HCOO	0.66	4×6×1	(3×2) 2×COOH	0.66	4×6×1	(2×2)	0.25	6×6×1	
	(3×3) 3×HCOO	0.66	4×4×1	(3×3) 3×COOH	0.66	4×4×1	(2×2) 2×CO	0.5	6×6×1	
	(1×2)	1	12×6×1	(1×2)	1	12×6×1	(1×1)	1	12×12×1	
	(3×6)	0.33	4×2×1	(3×6)	0.33	4×2×1	(3×3)	0.33	4×4×1	
	(3×4)	0.5	4×3×1	(3×4)	0.5	4×3×1	(3×2)	0.5	4×5×1	
Cu(211)	(3×3)	0.66	4×4×1	(3×3)	0.66	4×4×1	(3×3) 2×CO	0.66	4×4×1	
	(3×2)	1	4×5×1	(3×2)	1	4×5×1	(3×2) 2×CO	1	4×5×1	

Table S5. Total energies of each of the calculated systems. All energies in eV. (a) in x and y direction.

surfaces	size ^a	E		
	4×4	-22.1111		
	3×3	-18.003		
Cu(100)	2×3	-12.4363		
	2×2	-5.5257		
	1×1	-1.3813		
	4×4	-12.2079		
	3×3	-6.8656		
Cu(110)	2×4	-6.1029		
	2×2	-3.0506		
	1×1	-0.7625		
	4×4	-26.2532		
	3×3	-14.7605		
Cu(111)	3×2	-9.8388		
	2×2	-6.5573		
	1×2	-3.2789		
	1×1	-1.6392		
	3×6	-28.1207		
Cu(211)	3×4	-18.7475		
- ()	3×3	-14.0618		
	3×2	-9.3660		
adsorbates				
	4×4	-44.7658		
	3×3	-35.09306		
Cu(100) - formate	2×2	-28.10359		
	2×3	-53.37807		
	2×2 (2×HCOO)	-49.3798		
	4×4	-35.1978		
Cu(110) - formate	3×3	-29.8633		
	2×4 (2×HCOO)	-52.12319		
	2×2 (2×HCOO)	-49.0243		
	4×4	-48.6733		
	3×3	-37.1371		
Cu(111) – formate	2×2	-28.9057		
	3×2 (2×HCOO)	-54.34907		
	3×3 (3×HCOO)	-81.5849		
	1×2	-49.5454		
Cu(211) – formate	3×6	-51.0394		
	3×4	-41.6697		
	3×3	-36.98902		

	3×2	-32.2313		
	4×4	-43.8454		
	3×3	-34.1766		
0(100)	2×2	-27.2331		
Cu(100) - CIS-COOH	3×3 (3×COOH)	-77.6105		
	2×3 (2×COOH)	-51.5739		
	2×2 (2×COOH)	-48.3009		
	4×4	-34.1882		
0(110)	3×3	-28.8539		
Cu(110) - CIS-COOH	2×4 (2×COOH)	-50.14508		
	2×2 (2×COOH)	-47.0684		
	4×4	-47.6981		
	3×3	-36.1292		
	2×2	-28.0289		
	3×2 (2×COOH)	-52.7968		
	3×3 (3×COOH)	-79.2094		
	1×2	-24.0853		
	3×6	-50.0979		
	3×4	-40.7196		
	3×3	-36.0104		
	3×2	-31.2294		
	3×3	-25.1395		
Cu(100) CO	2×2	-18.2001		
Cu(100) - CO	2×2 (2×CO)	-30.9429		
	1×1	-13.4862		
	3×3	-19.6398		
Cu(110) - CO	2×2	-15.8243		
	2×2 (2×CO)	-28.7625		
	1×1	-13.3442		
	3×3	-27.3015		
	3×3 (2×CO)	-39.8089		
Cu(111) – CO	2×2	-19.1069		
	2×2 (2×CO)	-31.5247		
	1×1	-13.1757		
	3×3	-26.8508		
Cu(211) – CO	3×2	-22.1513		
	3×3 (2×CO)	-39.6126		
	3×2 (2×CO)	-34.3138		

Table S6. Zero-point energy corrections (ZPE), entropy contributions and total energies of gas-phase species and intermediates. (a) All values in eV. (b) $H_{2(g)}$ and $CO_{2(g)}$ are corrected by +0.09 eV and +0.41 eV, respectively, as described in reference [2]. (c) All values from reference [2], that is data based on Cu(211) and the BEEF-vdW functional.

intermediates	E	ZPE ^c	Sc	C _p dT⁰
HCOO*	see Table S5	0.624	0.000751	0.105
CO*	see Table S5	0.192	0.000452	0.085
Gas-phase				
species				
$H_{2(g)}^{b}$	-7.072	0.270	0.001380	0.091
CO _{2(g)} ^b	-18.003	0.320	0.002263	0.098
CO _(g)	-12.074	0.130	0.02092	0.091

References

- 1. A. Karelovic and P. Ruiz, *Catal. Sci. Technol.*, 2015, **5**, 869–881.
- F. Studt, M. Behrens, E. L. Kunkes, N. Thomas, S. Zander, A. Tarasov, J. Schumann, E. Frei, J.
 B. Varley, F. Abild-Pedersen, J. K. Nørskov and R. Schlögl, *ChemCatChem*, 2015, 7, 1105–1111.
- 3. J. Yoshihara, S. C. Parker, A. Schafer and C. T. Campbell, *Catal. Letters*, 1995, **31**, 313–324.
- 4. T. Fujitani, I. Nakamura, T. Uchijima and J. Nakamura, *Surf. Sci.*, 1997, **383**, 285–298.
- 5. D. B. Clarke and A. T. Bell, *J. Catal.*, 1995, **154**, 314–328.
- K. Larmier, W. C. Liao, S. Tada, E. Lam, R. Verel, A. Bansode, A. Urakawa, A. Comas-Vives and C. Copéret, *Angew. Chemie - Int. Ed.*, 2017, 56, 2318–2323.
- K. K. Bando, K. Sayama, H. Kusama, K. Okabe and H. Arakawa, *Appl. Catal. A Gen.*, 1997, **165**, 391–409.
- A. Karelovic, G. Galdames, J. C. Medina, C. Yévenes, Y. Barra and R. Jiménez, J. Catal., 2019, 369, 415–426.