Supporting Information

Water-Resistant Organic-Inorganic Hybrid Perovskite Quantum Dots Activated by Electron-Deficient d-Orbital of Platinum Atoms for Nitrogen Fixation

Yixuan Gao^{[a]#}, Xiao Su^{[a]#}, Juanjuan Wei^{[a]#}, Jianghui Sun, Min Zhang, Hongwei Tan^{*[a]},

Jiangwei Zhang*^[b], Jin Ouyang^[a], Na Na*^[a]

Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.

These authors contributed equally to this work.

*Corresponding Author: nana@bnu.edu.cn

Reagent

The chemical reagents used in the experiment are list as follows: Polycarbonate resin (PC, M.W. 45000, Acros), Methylamine hydrobromide (CH₃NH₃Br, MABr, 98%, Innochem), Lead (II) bromide (PbBr₂, Puratronic, 99.9%, Macklin), N, N-dimethylformamide (DMF, 99.9%, extra dry, Innochem), H₂PtCl₆ (99.9%, Macklin), K₂PtCl₄ (99.9%, Macklin), C₄H₈O₄Zn (Macklin, AR). Ultrapure water (Mill-Q, Millipore, 18.2 M Ω) was used in all experiments. All chemicals were used without further purification.

Fig. S1. HRTEM characterization of Pt^{IV}/Zn/PbO/PC-Zn/MAPbBr₃.

Fig. S2. HAADF-STEM of the Zn/PbO/PC-Zn/MAPbBr₃ with elemental mapping images of C, N, O, Br, Pb

and Zn (a-h). Zn/PbO-Zn/MAPbBr $_3$ and PC were labeled in (a).

Fig. S3. HAADF-STEM of the Pt^{IV}/Zn/PbO/PC-Zn/MAPbBr₃ with elemental mapping images of C, Pb, N,

Br, O, Zn and Pt (a-h). $Pt^{|V}/Zn/PbO\text{-}Zn/MAPbBr_3$ and PC were labeled in (a).

Fig. S4. HAADF-STEM (a) of the Zn/PbO/PC-Zn/MAPbBr₃ with EDX (b) line-scanning profile curves.

Fig. S5. HAADF-STEM (a) of the $Pt^{IV}/Zn/PbO/PC-Zn/MAPbBr_3$ with the EDX (b)spectrum.

 Table S1. The assignments of FTIR peaks for PbO/PC-MAPbBr₃, Zn/PbO/PC-Zn/MAPbBr₃ and

 Pt^{IV}/Zn/PbO/PC-Zn/MAPbBr₃.

1775 cm ⁻¹	stretching vibration of C=O		
1504、1463 cm ⁻¹	flexural vibration of -C=C- of benzene rings		
1365 cm ⁻¹	flexural vibration of -C(CH ₃)		
1228、1192、1163 cm ⁻¹	stretching vibration of -C-O-C-		
1601、1492 cm ⁻¹	flexural vibration of -C=C- of benzene rings flexural vibration of -C(CH ₃) stretching vibration of -C-O-C- bending vibration of -C=C- of benzene rings In-plane deformation of =C of Para-substituted benzene rings out-of-plane deformation of =C of Para-substituted benzene rings		
1079、1016 cm ⁻¹	In-plane deformation of =C of Para-substituted		
	benzene rings		
830 cm ⁻¹	out-of-plane deformation of =C of Para-substituted		
	benzene rings		

Table S2. The assignments of Raman peaks for PbO/PC-MAPbBr₃, Zn/PbO/PC-Zn/MAPbBr₃ and Pt^{IV}/Zn/PbO/PC-Zn/MAPbBr₃.

637、1231 cm ⁻¹	stretching vibrations of central carbon atom between
	the two benzene rings and the carbon atoms of the
	benzene ring (-C-C=)
707 cm ⁻¹	bending vibration between atoms of carbon chain in
	benzene ring (-C=C-)
887 cm ⁻¹	asymmetric stretching vibration (-C-O-C-)
1105 cm ⁻¹	stretching vibrations of -C=C-C= of benzene rings
1175 cm ⁻¹	stretching vibration of C=O
1590 cm ⁻¹	asymmetric stretching vibration of =C of benzene
	rings

Fig. S6. XPS spectra of the Pb4f (a), O1s (b), C1s (c) and Br3d (d) of the PbO/PC-MAPbBr₃ and Zn/PbO/PC-Zn/MAPbBr₃.

In Pb4f XPS spectra (Fig S6a), Pb-O and Pb-Br peaks were detected in both PbO/PC-MAPbBr₃ and Zn/PbO/PC-Zn/MAPbBr₃. Notably, on surface of Zn/PbO/PC-Zn/MAPbBr₃ and PbO/PC-MAPbBr₃, Pb-O signal was much higher than that of Pb-Br (from the subsurface of MAPbBr₃ and Zn/MAPbBr₃). This indicated that more PbO was exposed on the material surface. These Zn/PbO exposed surface would subsequently provide more active sites to interact with N₂ for photocatalysis NRR. In addition, C-1s peaks of PC (Fig S6c, Table S3) also confirmed the encapsulation by PC. Therefore, the present Zn/PbO/PC-Zn/MAPbBr₃ nanomaterials were further confirmed to be covered by PC with more Zn/PbO exposed on the surface. Besides, quite weak Br(3d) peaks of Br(3d5/2) and Br(3d7/2) for both Zn/PbO/PC-Zn/MAPbBr₃ and PbO/PC-MAPbBr₃ were observed in the subsurface (Fig 6d).

Fig. S7. X-ray photoelectron spectroscopy (XPS) spectra of the Pt^{II} 4f (d) of the Pt^{II}/Zn/PbO/PC-Zn/MAPbBr₃

 Table S3. Polycarbonate structure and bond assignments of PbO/PC-MAPbBr₃, Zn/PbO/PC-Zn/MAPbBr₃

and $Pt^{IV}\!/Zn/PbO/PC\text{-}Zn/MAPbBr_3$ in XPS peaks.

Peak	Polycarbonate Structure
-C-C-	Aromatic C-C/C-H
-C-C-	Aliphatic C-C/C-H
-C-O-	Aromatic C-O
-C=O-	Carbonate O-(C=O)-O
-C-N	MAPbBr ₃ PQDs -C-N

Table S4. PL Decay Parameters of the PbO/PC-MAPbBr₃, Zn/PbO/PC-Zn/MAPbBr₃ and Pt^{IV}/Zn/PbO/PC-Zn/MAPbBr₃ composite.

	$\tau_l(\mathrm{ns})$	$ au_2(\mathrm{ns})$	$ au_{average}(\mathrm{ns})$	χ
PbO/PC-MAPbBr ₃	9	50	27.76	1.24
Zn/PbO/PC-Zn/MAPbBr ₃	8	36	18.01	1.28
Pt ^{IV} /Zn/PbO/PC-	6.7	25.1	13.70	1.18
Zn/MAPbBr ₃				

Fig. S8. Evaluation of photocatalytic NRR catalyzed by $Pt^{II}/Zn/PbO/PC-Zn/MAPbBr_3$. (a) NH₃ yield versus

irradiation time with $N_{\rm 2}$ and Ar as feed gases. (b) Average $NH_{\rm 3}$ yields.

Fig. S9. Evaluation of photocatalytic NRR catalyzed by Pt nanoparticles catalyst loading (Pt-Pt^{IV}/Zn/PbO/PC-Zn/MAPbBr) on NRR performance. (a) NH_3 yield versus irradiation time with N_2 and Ar as feed gases. (b) Average NH_3 yields.

It should be noted, the present Pt^{IV}/Zn/PbO/PC-Zn/MAPbBr₃ exhibited the much higher NRR efficiency than the Pt-loaded nanoparticles (Pt-Pt^{IV}/Zn/PbO/PC-Zn/MAPbBr₃) (Figure S9), which could be caused by the stronger interaction between the loaded catalysts and H proton.

Fig. S10. FL characterizations on water-resistance and stability after photocatalytic NRR in aqueous phase for different days (0-10 days).

	$R_s(\Omega)$	$R_{sc}(\Omega)$	$R_{ct}(\Omega)$
PbO/PC-MAPbBr ₃	41	491	34050
Zn/PbO/PC-Zn/MAPbBr ₃	32	357	12271
Pt ^{IV} /Zn/PbO/PC-Zn/MAPbBr ₃	24	322	6071

Table S5. Fitting results of impedance data of the PbO/PC-MAPbBr_3, Zn/PbO/PC-Zn/MAPbBr_3 and

 $Pt^{IV}/Zn/PbO/PC-Zn/MAPbBr_3$ before the stability test.

Fig. S11. The EIS spectra of the catalyst after the stability test.

Table S6. Fitting results of impedance data of the PbO/PC-MAPbBr₃, Zn/PbO/PC-Zn/MAPbBr₃ and Pt^{IV}/Zn/PbO/PC-Zn/MAPbBr₃ after the stability test.

	$R_s(\Omega)$	$R_{sc}(\Omega)$	$R_{ct}(\Omega)$	
PbO/PC-MAPbBr ₃	32	358	34050	
Zn/PbO/PC-Zn/MAPbBr3	42	422	13271	
Pt ^{IV} /Zn/PbO/PC-Zn/MAPbBr	3 24	358	6100	

Fig. S12. Normalized K edge X-ray absorption near edge structure (XANES) χ (E) spectra of Zn (a), Pb (b)

and Pt^{IV} (c).

Fig. S13. $k^2 \chi(k)$ oscillations spectra of the PbO/PC-MAPbBr₃, Zn/PbO/PC-Zn/MAPbBr₃ and Pt^{IV}/Zn/PbO/PC-

Zn/MAPbBr₃.

Fig. S14. Wavelet transformextended X-ray absorption fine structure (WTEXAFS) of Pb foil (d), PbO (e) and PbBr₂ (f).

Fig. S15. Wavelet transformextended X-ray absorption fine structure (WTEXAFS) of Zn foil (a), ZnO (b) and

ZnBr₂ (c).

Fig. S16. Wavelet transformextended X-ray absorption fine structure (WTEXAFS) of Pt foil (a), PtO₂ (b) and

PtBr₂ (c).

Table S7. Structural parameters extracted from the Zn K-edge $\chi(R)$ space spectra fitting of Pt^{IV}/Zn/PbO/PC-

Zn/MAPbBr₃.

Zn- Pt ^{IV} /Zn/PbO	Reduced Chi- square (χ_v^2)	R- factor (%)	amp/	N _(Zn-O path)	R _(Zn-O path) (Å)	$\sigma^{2}_{(Zn-O \text{ path})}$ (10 ⁻³ Å ²)	ΔE_0 (eV)
				2.46±0.23	1.809 ± 0.055	3.7+/-1.1	2.42+/
				N _(Zn-Br path) R _(Zn-Br path) C (Å)	$\sigma^{2}_{(Zn-Br path)}$ $(10^{-3} Å^{2})$	ΔE_0 (eV)	
	372.35	0.0'2877	$\begin{array}{c ccccc} & & & & & & & & & & & & & & & & &$	4.5+/-1.3	3.06+/		
				N _{(Zn-O-Pb(Pt)}	R _{(Zn-O-Pb(Pt)}	σ ² _{(Zn-O-Pb(Pt)}	ΔE_0
				path)	path)	path)	(eV)
			-	1 21+0 18	3.112±	6.6+/-3.6	5.03+/
					0.087		-3.37

Table S8.Structural parameters extracted from the Pb K-edge $\chi(R)$ space spectra fitting ofPtlV/Zn/PbO/PCPC-Zn/MAPbBr3.

Pb- Pt ^{IV} /Zn/PbO	Reduced Chi- square (χ_v^2)	R- factor (%	amp/ S_0^2	N _(Pb-O path)	R _(Pb-O path) (Å)	σ ² (Pb-O path) (10 ⁻³ Å ²)	ΔE ₀ (eV)
	2480.69	0.0407	0.852	2.24±0.17	2.163 ± 0.026	3.4+/-1.2	3.02+/-
				$N_{(Pb-Br\ path)}$	R _(Pb-Br path) (Å)	σ ² (Pb-Br path) (10 ⁻³ Å ²)	ΔE_0 (eV)
				3.64±0.43	2.904 ± 0.035	5.8+/-3.1	4.15+/-

Table S9. Structural parameters extracted from the Pt K-edge $\chi(R)$ space spectra fitting of PtIV/Zn/PbO/PC-Zn/MAPbBr3.

Pt- Pt ^{IV} /Zn/PbO	Reduced Chi-square (χ_v^2)	R- factor (%)	amp/ S ₀ ²	$N_{(Pt-O path)}$	R _(Pt-O path) (Å)	σ ² _(Pt-O path) (10 ⁻³ Å ²)	ΔE ₀ (eV)
			0.80+/-	6	1.993± 0.056	3.1+/-1.7	3.43+/-
			amp/S_{a}^{2}	Nationality	R _{(Pt-O-Pt(Pb))}	$\sigma^2_{(Pt-O-Pt(Pb))}$	ΔE_0
				N _{(Pt-O-Pt(Pb))} (Å)	(10 ⁻³ Å ²)	(eV)	
	508 43 0 0406	0.81+/-	2	3 111 + 0 088	5 5+/-2 6	4.71+/-	
	500.45	0.0400	0.15	2 3.111±	5.111 ± 0.000		2.21
			amp/ Se ²	N	R _{(Pt-O-Pt(Pb))}	$\sigma^{2}_{(\text{Pt-O-Pt(Pb)})}$	ΔE_0
				1 *(Pt-O-Pt(Pb))	(Å)	(10 ⁻³ Å ²)	(eV)
		0.83+/-	0.83+/-		3.659± 0.125	5 5+/ 2 6	4.71+/-
			0.15	4		5.5+/-2.6	2.21

Fig. S17. The optimized structure of (a) Zn doped and (b) Zn/Pt^{IV} co-doped PbO (110) surface.

Fig. S18. The optimized structure of H adsorbed on (a) Pt^{IV} and (b) Zn site in neutral (above) or charged

(below) system.