Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2022

Theoretical insights into the electroreduction of nitrate to ammonia on the graphene-based single-atom catalyst

Yuanyuan Wang,^{1,4} Donghai Wu,^{1,2,4} Peng Lv,^{1,4} Bingling He,^{1,4} Xue Li,^{1,4}, Dongwei Ma,^{1,4*} and Yu Jia^{1,3,4*}

¹Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China

²Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured

Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China

³International Laboratory for Quantum Functional Materials of Henan, and School of Physics, Zhengzhou University, Zhengzhou 450001, China

⁴Joint Center for Theoretical Physics, and Center for Topological Functional Materials, Henan University, Kaifeng 475004, China

Supporting Information

^{*}Corresponding author. E-mail: <u>madw@henu.edu.cn;</u> (D. Ma).

^{*}Corresponding author. E-mail: jiayu@henu.edu.cn (Y. Jia).

Table S1 Zero-point energy corrections (ΔE_{ZPE}) and entropic contributions ($T\Delta S$) (at 298.15 K) to the free energies of the key intermediates.

Species	$\Delta E_{\rm ZPE} ({\rm eV})$	$T\Delta S$ (eV)
NO ₃ *	0.42	0.23
NO ₃ H*	0.61	0.33
NO_2^*	0.27	0.20
HNO ₂ *	0.55	0.20
NO ₂ H*	0.55	0.20
HNO ₂ H*	0.84	0.34
NO*-end	0.19	0.09
NO*-side	0.16	0.14
HNO*-end	0.47	0.18
HNO*-side	0.46	0.15
HNOH*	0.78	0.17
NH*	0.32	0.12
NH_2*	0.68	0.10
NO ₂ *+OH*	0.64	0.29
NO*+OH*	0.54	0.25
HNO*+OH*	0.85	0.23
$H_2NO^*+OH^*$	1.17	0.30
O*+OH*	0.44	0.15
H_2NO^*	0.78	0.20
H ₂ NOH*	1.13	0.22
$H_2N^*+OH^*$	1.05	0.18
O*	0.06	0.11
OH*	0.34	0.13

Table S2 Zero-point energy corrections (ΔE_{ZPE}) and entropic contributions ($T\Delta S$) (at 298.15 K) to the free energies of the relevant molecules, and their free energy correction ($\Delta G_{correct}$) referenced to the experimental formation energy.

Species	$\Delta E_{\rm ZPE} ({\rm eV})$	$T\Delta S$ (eV)	$\Delta G_{\text{correct}}$ (eV)
HNO ₃ (g)	0.70	0.83	1.06
HNO ₂ trans(g)	0.53	0.77	0.67
$NO_2(g)$	0.23	0.74	0.93
NH ₃ (g)	0.89	0.60	0.18
$H_2(g)$	0.27	0.40	
$H_2O(g)$	0.56	0.67	

Table S3 The key parameters of the TMN₃@G and TMN₄@G systems. Average distance $(d_{\text{TM-N}})$ between the embedded TM atom and its bonded N atoms, binding energy (E_b) of the TM atom with respect to the N-doped graphene and the isolated metal atom, net charge (ΔQ) of the TM atom, spin magnetic moment (M) of the whole system (the value outside the parenthesis) and the embedded TM atom (the value inside the parenthesis).

TMN _x	$d_{\mathrm{TM-N}}(\mathrm{\AA})$	$E_{\rm b}({\rm eV})$	$\Delta Q(e)$	M ($\mu_{\rm B}$)
TiN ₃	1.95	-5.22	-1.74	2.19 (1.58)
VN ₃	1.95	-7.05	-1.50	2.44 (2.64)
CrN ₃	1.96	-3.86	-1.26	4.56 (3.87)
MnN_3	2.01	-4.10	-1.15	5.32 (4.89)
FeN ₃	1.87	-4.92	-1.16	3.26 (3.29)
CoN_3	1.83	-5.21	-0.92	2.30 (2.11)
NiN ₃	1.84	-4.60	-0.93	1.47 (1.26)
TiN ₄	2.04	-8.24	-1.88	1.46 (1.32)
VN_4	1.98	-7.82	-1.68	2.78 (2.60)
CrN ₄	1.95	-6.89	-1.55	3.99 (3.68)
MnN_4	1.92	-6.79	-1.60	3.02 (3.20)
FeN ₄	1.90	-7.62	-1.32	2.00 (2.03)
CoN_4	1.88	-7.92	-1.01	0.98 (0.82)
NiN ₄	1.88	-7.76	-1.01	0.00 (0.00)

TMN _x	$\Delta G(\mathrm{NO}_3^*)$ (eV)	$\Delta G(\mathrm{H}^*)$ (eV)	$\Delta Q(NO_3^*)(e)$	<i>d</i> (M-O*) (Å)
TiN ₃	-3.62	-0.65	0.86	2.12, 2.14
VN ₃	-3.23	-0.45	0.82	2.06, 2.13
CrN ₃	-3.44	-0.34	0.83	2.02, 2.04
MnN ₃	-2.71	-0.31	0.78	2.01, 2.01
FeN ₃	-2.66	0.42	0.76	1.99, 1.99
CoN ₃	-2.45	0.01	0.70	1.95, 1.95
NiN ₃	-2.11	0.23	0.67	1.93, 1.93
TiN_4	-3.37	-0.49	0.78	2.13, 2.14
VN_4	-2.73	-0.12	0.82	2.06, 2.06
CrN_4	-1.33	0.32	0.75	1.93
MnN_4	-0.87	0.48	0.79	2.03
FeN ₄	-0.70	0.32	0.68	1.91
CoN_4	-0.55	0.12	0.66	1.94
NiN ₄	0.20	1.61	0.68	2.21

Table S4 Binding free energy of NO₃⁻ ($\Delta G(NO_3^*)$) and H ($\Delta G(H^*)$), the net charge of the NO₃*, and the distance between the O atoms in NO₃* and its bonded TM atom.

Fig. S1. The atom configurations with TM-N bond lengths (in Å) of the $TMN_3@G$ (a) and $TMN_4@G$ (b) systems. The total densities of states (TDOS) of the $TMN_3@G$ (c) and $TMN_4@G$ (d) systems. The vertical dashed line denotes the position of Fermi level (E_f). The positive and negative values of TDOS correspond to the spin-up and spin-down states, respectively.

Fig. S2. The most stable adsorption configurations of H atoms on $TMN_3@G$ (a) and $TMN_4@G$ (b).

Fig. S3. The most stable adsorption configurations of NO molecules on $TMN_3@G$ (a) and $TMN_4@G$ (b).

Fig. S4. The most stable configurations of HNO_3^* for $CoN_4@G$ (a) and $NiN_4@G$ (b).

Fig. S5. Free energy diagram together with the configurations of corresponding intermediates for the eNO_3RR on $TiN_3@G$.

Fig. S6. Free energy diagram together with the configurations of corresponding intermediates for the eNO₃RR on VN₃@G.

Fig. S7. Free energy diagram together with the configurations of corresponding intermediates for the eNO₃RR on CrN₃@G.

Fig. S8. Free energy diagram together with the configurations of corresponding intermediates for the eNO₃RR on MnN₃@G.

Fig. S9. Free energy diagram together with the configurations of corresponding intermediates for the eNO₃RR on FeN₃@G.

Fig. S10. Free energy diagram together with the configurations of corresponding intermediates for the eNO_3RR on $NiN_3@G$.

Fig. S11. Free energy diagram together with the configurations of corresponding intermediates for the eNO_3RR on $TiN_4@G$.

Fig. S12. Free energy diagram together with the configurations of corresponding intermediates for the eNO_3RR on $VN_4@G$.

Fig. S13. Free energy diagram together with the configurations of corresponding intermediates for the eNO_3RR on $CrN_4@G$.

intermediates for the eNO₃RR on MnN₄@G.

Fig. S15. Free energy diagram for the eNO₃RR on FeN₄@G with consideration of the solvation effect.

Fig. S16. Projected densities of states (PDOS) of the TM 3d states and O (in NO_3^*) 2p states, which is bonded with the TM atom. (a) and (b) are for $TMN_3@G$ and $TMN_4@G$, respectively. The vertical dashed line denotes the position of Fermi level (E_f). The positive and negative values of TDOS correspond to the spin-up and spin-down states, respectively.

Fig. S17. Projected densities of state (PDOS) and the d-band center (ϵ_d) of the TM 3d states of the pristine TMN₃@G and TMN₄@G. The vertical dashed line denotes the position of Fermi level (E_f). The positive and negative values of TDOS correspond to the spin-up and spin-down states, respectively.

Fig. S18. Free energy diagram together with the configurations of corresponding intermediates for the eNO_3RR on $RuC_4@G$.

Fig. S19. Free energy diagram together with the configurations of corresponding intermediates for the eNO_3RR on $IrC_4@G$.