GaOCl monolayer: a novel wide-bandgap 2D material with hole-doping-induced ferromagnetism and multidirectional piezoelectricity

Shujuan Jiang, $^{\rm a}$ Huabing Yin, $^{\rm * \, b}$ and Guang-Ping Zheng $^{\rm * \, a}$

^{a.} Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China.

^{b.} Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China.

*E-mails: mmzheng@polyu.edu.hk (G.-P. Zheng); yhb@henu.edu.cn (H. Yin)

Figure S1. HSE06 band structures of GaOCl monolayer under the in-plane uniaxial strains varying from -6% to +6% along (a) *x*-, (b) *y*- and (c) *xy*-directions. The bandgaps are highlighted in blue. The Fermi level is at 0 eV.

Figure S2. The total energy of GaOCl monolayer as a function of uniaxial strains applied along (a) x-direction, and (b) y-direction, respectively.