Self-assembled HfO₂-Au nanocomposites with ultra-fine vertically aligned Au nanopillars

Yizhi Zhang,¹ Di Zhang,² Juncheng Liu,¹ Ping Lu,³ Julia Deitz, ³ Jianan Shen,¹ Zihao He,¹ Xinghang Zhang, ¹ Haiyan Wang^{1,4*}

¹ School of materials engineering, Purdue University, West Lafayette, 47907, USA

²Los Alamos National Laboratory, Los Alamos, NM 87545, USA

³Sandia National Laboratories, Albuquerque, NM 87185, USA

⁴School of Electrical and Computer Engineering, Purdue University, West Lafayette, 47907, USA

*Address correspondence to: <u>hwang00@purdue.edu</u> (Haiyan Wang)

Supporting information

Figure S1 XRD results of HfN target used for PLD growth

Figure S2 XRD θ -2 θ pattern of HfN deposited on MgO with or without Au.

Figure S3 STEM cross-section images of HfO₂-Au thin film on STO (with buffer) with 10Hz frequency

Figure S4 STEM cross-section images of HfO_2 -Au thin film on STO (with buffer) with (a) HfN target and (b) HfO_2 target. (c) High resolution TEM image of HfO_2 -Au thin film made by HfO_2 target.

Figure S5 STEM Plan-view images of HfO₂-Au thin film on STO (with buffer) with (a) HfN target and (b) HfO₂ target.

Figure S6 HAADF image and EDS elemental mapping of HfO₂-Au thin film on STO

(with buffer) under room temperature

Figure S7 Transmittance of HfO_2 -Au thin film on STO (with buffer) with different incident angle

Figure S8 (a) Cross-section and (b) Plan-view of simulated electric field map under 480 nm incident light. (c) 3D model of simulation.