Supplementary Materials for

ZIF-9(III) Nanosheets synthesized in Ionic Liquid/Ethanol

Mixture for Efficient Photocatalytic Hydrogen Production

Yanyue Wang,^{a,b} Jianling Zhang,^{*a,b} Xiuyan Cheng,^{a,b} Yufei Sha,^{a,b} Mingzhao Xu,^{a,b} Zhuizhui Su,^{a,b} Jingyang Hu^{a,b} and Lei Yao^c

^aBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China.

^bSchool of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R.China.

^cBeijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R.China.

*Correspondence to: zhangjl@iccas.ac.cn

Results and Discussion

Fig. S1. XRD pattern of *m*-ZIF-9(III).

Fig. S2. SEM image of *m*-ZIF-9(III). Scale bar: 100 μ m.

Fig. S3. CoN_4 tetrahedral (red) structure in ZIF-9(III).

Fig. S4. FT-IR spectra of *n*-ZIF-9(III) and pure [Emim]OAc.

For *n*-ZIF-9(III), the absorptions at \approx 741, 1236, 1293, 1464 and 1675 cm⁻¹ can be assigned to C-H bending, C-C stretching, C-N stretching, C=C stretching and C=N stretching, respectively. The characteristic FT-IR vibrations of [Emim]OAc cannot be observed in the FT-IR spectrum of the *n*-ZIF-9(III), proving that [Emim]OAc is removed completely.

Fig. S5. Mott-Schottky plots of *n*-ZIF-9(III) in 0.2 M Na_2SO_4 aqueous solution, with inset of energy diagram of the LUMO and HOMO levels of *n*-ZIF-9(III).

Fig. S6. Mott-Schottky plots of m-ZIF-9(III) in 0.2 M Na₂SO₄ aqueous solution, with inset of energy diagram of the LUMO and HOMO levels of m-ZIF-9(III).

Fig. S7. XRD pattern of *n*-ZIF-9(III) after photocatalytic reaction.

Fig. S8. SEM image of *n*-ZIF-9(III) after photocatalytic reaction. Scale bar: 20 μ m.

Photocatalysts	Conditions (Irradiation, Sacrificial agent, Photosensitizer, Cocatalyst)	H ₂ Production Rate (mmol g ⁻¹ h ⁻¹)	Ref.		
MOF photocatalysts					
n-ZIF-9(III)	300 W Xe lamp (λ > 420 nm), Triethanolamine, [Ru(bpy)₃] ²+	112.37	This work		
ZIF-67	450 nm LED light, Triethanolamine, [Ru(bpy)₃]²+	0.84	[1]		
Wells-Dawson-type polyoxometalates	Visible light, Methanol, $[Ru(bpy)_3]^{2+}$	3.55	[2]		
Mo ₂ S ₁₂ @MIL-101(AI)	300 W Xe lamp (λ > 420 nm), Triethanolamine, [Ru(bpy)₃]²⁺	27.08	[3]		
Ni@MOF-5	300 W Xe lamp (λ > 420 nm), Triethanolamine, Eosin Y, Ni nanoparticles	30.22	[4]		
NiMo@MIL-101	300 W Xe lamp (λ > 420 nm), Triethanolamine, Eosin Y, NiMo alloy clusters	14.80	[5]		
Pt@NH ₂ -UiO-66	300 W Xe lamp (λ > 420 nm), methanol, Calix-3, Pt particles	1.53	[6]		
Pt@UiO-66(Zr)	300 W Xe lamp (λ > 420 nm), Triethanolamine, Rhodamin B, Pt nanoparticles	0.12	[7]		
NH ₂ -MIL-125(Ti)/CN/ Ni1 _{5.8} Pd _{2.1}	300 W Xe lamp, Triethanolamine, Eosin Y, NiPd nanoparticles	8.70	[8]		
RCGO/U6N (graphene wrapped on UiO-66-NH ₂)	300 W Xe lamp (λ > 420 nm), Triethanolamine, Erythrosin B	41.4	[9]		

Table S1. Comparison of the reaction conditions and performances of MOF or MOF-based photocatalysts for photocatalytic H_2 production.

Co(II)@MIL-125-NH ₂	300 W Xe lamp (λ > 380 nm), Triethanolamine	0.55	[10]
CdS/MIL-101(Cr)	300 W Xe lamp (λ > 420 nm), Lactic acid,Pt particles	0.76	[11]
Ni-TBAPy-NB (Ni MOF)	300 W Xe lamp (λ > 420 nm), ascorbic acid	5	[12]

References

- 1. B. Pattengale, S. Yang, S. Lee, J. Huang, ACS Catal., 2017, 7, 8446-8453.
- J. Tian, Z. Y. Xu, D. W. Zhang, H. Wang, S. H. Xie, D. W. Xu, Y. H. Ren, H. Wang,
 Y. Liu, Z. T. Li, *Nat. Commun.*, 2016, 7, 11580.
- H. Li, S. Yao, H.-L. Wu, J.-Y. Qu, Z.-M. Zhang, T.-B. Lu, W. Lin, E.-B. Wang, *Appl. Catal.*, B., 2018, 224, 46-52.
- 4. W. Zhen, J. Ma, G. Lu, *Appl. Catal., B.*, 2016, **190**, 12-25.
- W. Zhen, H. Gao, B. Tian, J. Ma, G. Lu, ACS Appl. Mater. Interfaces., 2016, 8, 10808-10819.
- Y.-F. Chen, L.-L. Tan, J.-M. Liu, S. Qin, Z.-Q. Xie, J.-F. Huang, Y.-W. Xu, L.-M. Xiao, C.-Y. Su, *Appl. Catal.*, B., 2017, **206**, 426-433.
- J. He, J. Wang, Y. Chen, J. Zhang, D. Duan, Y. Wang, Z. Yan, *Chem. Commun.*, 2014, **50**, 7063-7066.
- 8. J. Xu, J. Gao, C. Wang, Y. Yang, L. Wang, Appl. Catal., B., 2017, 219, 101-108.
- Y. Wang, Y. Yu, R. Li, H. Liu, W. Zhang, L. Ling, W. Duan, B. Liu, *J. Mater. Chem.* A., 2017, 5, 20136-20140.
- 10. Z. Li, J.-D. Xiao, H.-L. Jiang, ACS Catal., 2016, 6, 5359-5365.
- 11. J. He, Z. Yan, J. Wang, J. Xie, L. Jiang, Y. Shi, F. Yuan, F. Yu, Y. Sun, *Chem. Commun.*, 2013, **49**, 6761-6763.
- L. Liu, S. Du, X. Guo, Y. Xiao, Z. Yin, N. Yang, Y. Bao, X. Zhu, S. Jin, Z. Feng, F. Zhang, J. Am. Chem. Soc., 2022, 144, 2747-2754.