Supporting Information

Two-Dimensional Conductive Polymer/V₂O₅ Composite with Rapid Zinc-Ion Storage Kinetics for High-Power Aqueous Zinc-Ion Battery

Bo Wang,^{‡a} Simin Dai,^{‡c} Zehao Zhu,^{‡c} Lin Hu,^b Zhen Su,^b Yingzhi Jin,^b Liukang Xiong,^c Jiasong Gao,^c Jun Wan,^{*c,d} Zaifang Li,^{*b} and Liang Huang^{*c}

^a School of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023, China.

^b China-Austrialia Institute for Advanced Materials and Manufacturing, Jiaxing University, Jiaxing 314001, China.

^c Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.

^d State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan 430200, China.

‡ These authors contributed equally to the work.

* Corresponding authors. E-mail addresses: wanj@wtu.edu.cn (J. Wan); zaifang.li@zjxu.edu.cn (Z. Li); huangliang421@hust.edu.cn (L. Huang)

Fig. S1. (a) XRD pattern and (b) FTIR spectra of PPy/V_2O_5 .

Fig. S2. (a) TEM image and (b) the corresponding elements mapping of PPy/V_2O_5 , showing the distribution of O, V, C, and N in the material.

Fig. S3. CV curves at different scan rates.

Fig. S4. The electrochemical impedance spectroscopy curves of PEDOT/V₂O₅ and PPy/V_2O_5 .

Fig. S5. Rate capabilities of PEDOT at different rates from 0.2 to 50 A g^{-1} .

Fig. S6. Rate capabilities of (a) PEDOT/V₂O₅-1 and (b) PEDOT/V₂O₅-2 at different rates from 0.2 to 50 A g^{-1} .

Fig. S7. Cyclic performances of PEDOT/V₂O₅ at (a) 2 A g^{-1} , (b) 10 A g^{-1} , (c) 20 A g^{-1} , and (d) 30 A g^{-1} .

Fig. S8. (a, b) GITT analysis results for PPy/V_2O_5 in charge/discharge process. (c, d) The Zn^{2+} diffusion coefficient at different states of charge/discharge obtained by GITT.

Fig. S9. (a) CV curves at different scan rates of PPy/V₂O₅ sample. (b) Ragone plots of aqueous $Zn/PPy/V_2O_5$ battery. (c) Rate capabilities of PPy/V₂O₅ at different rates from 0.2 to 30 A g⁻¹. (d) Cyclic performances of PPy/V₂O₅ at 10 A g⁻¹ for 1800 cycles.

Fig. S10. The elements mapping of PEDOT/ V_2O_5 at (a) fully charged state (1.6 V) and (b) fully discharged state (0.2 V).

Figure 11. The equivalent circuit model of EIS of PPy/V_2O_5

Figure 12. The CV curve of PEDOT/V₂O₅ at a scan rate of 2 mV s⁻¹

Figure S13. The high-resolution XPS O 1s spectra of pristine V_2O_5 and PEDOT/ V_2O_5 .

Figure S14. The N_2 adsorption–desorption isotherm and pore size distribution of (a) PEDOT- V_2O_5 and (b) pristine V_2O_5 .