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1. Particle synthesis

Table SI 1.  List and weight of chemicals used for particle synthesis.

Nominal 
particle 

diameter / nm
Water / g

Ethanol / g

(absolute, VWR)

Ammonia / g

(25 %, Merck)
Tetraethyl 

orthosilicate / g

40 46.5 510 10 64.5

70 60 477 10 78.5

100 73.5 453 10 99.9

80 67 465 10 89.2

2. Particle characterization

 

Figure SI 1. Representative transmission electron microscopy (TEM) image and dynamic light 

scattering (DLS) auto-correlation functions of 40 nm SiO2 ENPs (Z-average diameter of 46 nm 

and a PDI of 0.05). The experimental auto-correlation functions (symbols) are analyzed with a 

cumulant-type nonlinear regression (solid lines).
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Figure SI 2. Representative TEM image and DLS auto-correlation functions of 70 nm SiO2 

ENPs (Z-average diameter of 69 nm and a PDI of 0.04). The experimental auto-correlation 

functions (symbols) are analyzed with a cumulant-type nonlinear regression (solid lines).

Figure SI 3. Representative TEM image and DLS auto-correlation functions of 100 nm SiO2 ENPs 

(Z-average diameter of 116 nm and a PDI of 0.05). The experimental auto-correlation functions 

(symbols) are analyzed with a cumulant-type nonlinear regression (solid lines).
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Figure SI 3. The impact of different sonication parameters on the DLS autocorrelation function 

of agglomerated 100 nm SiO2 ENPs. The symbols are experimental data, and the solid lines are 

cumulant-type nonlinear regressions. The impact of sonication on DLS is evident. Sonication 1 

(Run 1 in Table 1): Volume = 1 mL, Concentration = 1 mg mL-1, Bath sonication, Amplitude = 30 

%, Duration = 45 min, Energy density = 2025 J mL-1. Sonication 2 (Run 7 in Table 1): Volume = 

5 mL, Concentration = 1 mg mL-1, Probe sonication, Amplitude = 10 %, Duration = 20 min, Energy 

density = 715 J mL-1. Sonication 3 (Run 13 in Table 1): Volume = 10 mL, Concentration = 5 mg 

mL-1, Bath sonication, Amplitude = 30 %, Duration = 1 min, Energy density = 5 J mL-1.

4



3. Machine learning terms

 Categorical Data: Categorical labels have no intrinsic order or is based on two or more 

categories rather than numerical values (e.g. sonicator type: “bath” or “probe”; NP 

Chemical formula: “SiO2”, “TiO2”, “ZnO” or “CeO2”).1

 One-Hot Encoding: As some ML methods cannot work with categorical data, One-Hot 

Encoding is needed to convert categories into numerical labels by creating a feature column 

for each category and using value “1” to encode the presence and “0” to encode the absence 

(Table SI 1).1

Table SI 1. Encoding categorical data (particle material) into numerical data using One-

Hot-Encoding.

Material SiO2 TiO2 ZnO CeO2

SiO2 1 0 0 0

TiO2 0 1 0 0

ZnO 0 0 1 0

CeO2 0 0 0 1

 Training set: Part of the data, on which the learning algorithm is trained on.2

 Validation set: Data, which is taken from the training data set used for hyperparameter 

tuning. It is necessary for the training procedure to see if the model is able to predict 

unseen data, but to test the final predictability of a model the test data set should not be 

used for training processes. Therefore, the validation data is part of the training data, but 
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withhold in the training procedure (Cross-validation). Based on the predictability of the 

validation set, the models training procedure is adjusted.2

 Cross-validation: Sampling procedure that splits the training set into subsets. One of the 

splits is withhold during the training of the model and used as a validation set (Figure SI 

5).2

Figure SI 5. Schematic presentation of splitting data to obtain training set, validation set, 

and test sets, and the concept of five-fold cross validation.

 Test set: Part of the data, on which the performance of the algorithm is tested by comparing 

the measured results with the predicted results. To correctly asses the performance of the 

model, the testing needs to be performed on data the model has not seen in the training 

process.2

 Model hyperparameter: Parameters that are dedicated to configurate the algorithm and are 

adjusted by the operator. In tree-based models, hyper-parameters include the maximum 

depth of the tree, the number of trees to grow, the number of variables to consider when 
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building each tree, the minimum number of samples on a leaf or the fraction of observations 

used to build a tree. There are multiple ways to determine the hyper-parameter set.3, 4

 Tree-structured Parzen estimator (TPE) algorithm: Algorithm to automatically determine 

the optimal hyper-parameter set. This is done by mapping a response surface on the 

objective function  of the probability of a score  (here root mean squared error)  𝑝(𝑦│𝑥) 𝑦

regards to a hyperparameter  using Equation SI 1.𝑥

(SI 1)
𝑝(𝑦│𝑥) =

𝑝(𝑦│𝑥) ∙ 𝑝(𝑦)
𝑝(𝑥)

The objective function is expressed with Equation SI 2.

(SI 2)
𝑝(𝑦│𝑥) =

𝑝(𝑦│𝑥) ∙ 𝑝(𝑦)
𝑝(𝑥)

with  being a certain threshold and  and  being two different distribution of 𝑦 ∗ 𝑙(𝑥) 𝑔(𝑥)

hyperparameter sets. As the goal of the algorithm is to find the parameter set with the 

minimal score, the scores of these two functions are compared with each other. While the 

algorithm keeps the more successful function (so the one that outputs the lower score), the 

other one is replaced with a new function, and again the two scores are compared. This is 

repeated until the optimal parameter set is found.3, 4

 Hyperparameter optimization grid: The optimization was done with a Tree-structured 

Parzen estimator5 as implemented in the Optuna-library.6 To find the optimal parameter set 

for the best predictability of the model, a five-fold stratified cross validation and the mean 

absolute error as metric is used over this grid: 

    params = {
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        # "scaler": trial.suggest_categorical("scaler", ["standard", "robust"]),

        "n_estimators": trial.suggest_int("n_estimators", 10, 500),

        "colsample_bytree": trial.suggest_uniform("colsample_bytree", 0.4, 0.9),

        "colsample_bylevel": trial.suggest_uniform("colsample_bylevel", 0.4, 0.9),

        # "min_child_weight": trial.suggest_int("min_child_weight", 0, 350),

        "subsample": trial.suggest_uniform("subsample", 0.4, 0.9),

        # "gamma": trial.suggest_uniform("gamma", 0, 1000),

        "max_depth": trial.suggest_int("max_depth", 2, 60),

    }

 Model “Learnable” parameters / Node weights: The learnable parameters are the choice of 

decision variables at each node and the numeric thresholds used to decide whether to take 

the left or right branch when generating predictive rules of a model. These parameters are 

determined in the training and validating process of the model (in our case Gradient 

Boosting Decision Tree).2

 Gradient Boosting Decision Tree: Gradient boosting means, that a cycle starts with fitting 

an initial model (this can be a tree or linear regression) to the data. A second model is built 

which focuses on predicting the cases where the first model performs poorly more 

accurately. The error of prediction is reduced by determining the targets outcome for this 

second model and changing the model’s node weights based on their impacts to the 

prediction error. This is repeated multiple times until the error is satisfying.2
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 Feature Importance Analysis: Features act next to the data as input to our model. Those 

features can stand alone or can be built from other features by applying feature engineering. 

The better the combination of features is describing the underlying physical and chemical 

processes, the better the insights, and therefore the predictability, of the model will be. To 

understand the feature hierarchy the model is following for predicting the target, one can 

determine the Feature Importance which can be done in multiple ways.2

 SHAP (SHapley Additive exPlanations): The SHAP method is a way to determine the order 

of importance of the used features by determining the Shapley-value of every possible 

feature permutation. The Shapley-values  are calculated using the Equation SI-3.7𝜑𝑖,𝑗

(SI 3)
𝜑𝑖,𝑗 =  ∑

𝑆 ⊆ 𝑀 \𝑖  

|𝑆|!(|𝑀| ‒ |𝑆| ‒ 1)!
|𝑀|!

[𝑓(𝑆 ∪ 𝑖) ‒ 𝑓(𝑆)]

Here, the difference of models’ prediction with and without feature  with respect to feature 𝑖

 are determined with  as the subset of features that are not including feature ,  the 𝑗 𝑆 𝑖 (𝑆 ∪ 𝑖)

subsets of features in  plus feature ,  the set of all features,  as the model trained 𝑆 𝑖 𝑆 𝑓(𝑆 ∪ 𝑖)

with all features and  as the model trained without feature . To determine the global 𝑓(𝑆) 𝑖

importance of features, especially for correlated features, the Shapley-values are 

determined for every possible feature combination. The main effect for the prediction can 

then be obtained as the difference between SHAP value  and sum of SHAP interaction ∅𝑖

values for a feature using Formula SI-4.8, 9

(SI 4)
𝜑𝑖,𝑖 = ∅𝑖 ‒ ∑

𝑗 ≠ 𝑖

𝜑𝑖,𝑗
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4. Calibration of sonication energy

The delivered sonication energy was determined via calorimetry, as described elsewhere,10 using 

50 mL and 100 mL of MilliQ water. The increase of water temperature ( ) was measured during 𝑇

sonication at timepoints of 60 s, 5 min, 10 min, 15 min, 20 min, 25 min, 30 min, 35 min, 40 min, 

and 45 min. All measurements were repeated three times. Given that the sonicators were thermally 

not isolated, part of the sonication power was lost to the environment via heat transfer. At the same 

time, we may safely assume that the environment behaves as a heat sink with a quasi-constant 

temperature ( ). Therefore, the heat transfer could be described by Fourier’s law, and the power 𝑇𝑒𝑛𝑣

balance may be expressed by a simple first order and linear ordinary differential equation:

(SI 5)
𝐶𝑝 ∙ 𝑚 ∙

𝑑𝑇
𝑑𝑡

= 𝑃𝑆 ‒ 𝐿 ∙ (𝑇(𝑡) ‒ 𝑇𝑒𝑛𝑣)

where  is the specific heat of water (4.18 J/g K),  is the mass of the MilliQ water (g), and L is 𝐶𝑝 𝑚

a loss coefficient (J s-1 K-1). 

Then the effective power is simply

(SI 6) ,
𝑃 =

𝑑𝑇
𝑑𝑡

𝑚 𝐶𝑝

and the energy released by sonication to the water is then obtained by integrating the time-

dependent effective power over time. By solving Equation SI 5 we obtain the model to describe 

the temperature as a function of sonication time

(SI 7)
𝑇(𝑡) = 𝑇𝑒𝑛𝑣 +

𝑃𝑆

𝐿 (1 ‒ ⅇ
‒

𝐿
𝐶𝑝𝑚

𝑡

)
where from the temperature vs time curve is at hand and so is the function , and the effective 

𝑑𝑇
𝑑𝑡

power and energy may be determined via Equation SI 6. 
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5. Model validation

Figure SI 7. Distribution of the R2 score for the test set of 100 newly randomly seeded and trained 

models. Upper left panel: Model based on lab generated data, predicting the Z-average. Upper 

right panel: Model based on lab generated data, predicting the PDI. Lower left panel: Model based 

on meta data, predicting the Z-average. Downer right panel: Model based on meta generated data, 

predicting the PDI.
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6. Feature importance analysis

The global importance of each feature is based on its relative, mean absolute SHAP value

Figure SI 8. Summary of the SHAP analysis to determine the feature importance for the model 

predicting the Z-average based on experimental data. The violin plots show how many data points 

exist for a certain feature and SHAP value. The grey, vertical line indicates the baseline, so the 

average predicted value for all data points. A negative SHAP value (shown on the abscissa) 

indicates a low predicted Z-average with regards to the baseline, and a positive SHAP value a 

higher predicted Z-average. Upper left panel: Distribution of SHAP values for the model 

predicting the Z-average based on experimental data. Upper right panel: Distribution of SHAP 

values for the model predicting the PDI based on experimental data. Lower left panel: Distribution 

of SHAP values for the model predicting the Z-average based on meta-analysis. Lower right panel: 

Distribution of SHAP values for the model predicting the PDI based on meta-analysis.
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