Supporting Information

Bimetallic RuNi-Decorated Mg-CUK-1 for Oxygen-Tolerant Carbon Capture and Conversion to Methane

Timothy Zurrer, Emma Lovell, Zhaojun Han, Kang Liang, Jason Scott*, Rose Amal*

Figure S1. Simulated powder XRD patterns for Mg-CUK-1 under anhydrous and hydrated conditions.

Figure S2. N₂ adsorption isotherms of Mg-CUK-1 before and after loading with Ni and Ru.

Figure S3. X-ray diffraction patterns of spent Ni- and Ru-loaded Mg-CUK-1 following steady state CO₂ hydrogenation performance tests.

Figure S4. Representative gas chromatograph flame ionization detector (GC-FID) signal for the CO_2 capture and conversion experimental runs. a) Complete experimental time on stream data and b) first 10 peaks associated with CH_4 generation.

Figure S5. X-ray diffraction patterns of 0.3Ru2.7Ni-loaded Mg-CUK-1. Neat Mg-CUK-1 is provided for comparison.

Figure S6. CO₂ adsorption isotherm of 0.3Ru2.7Ni Mg-CUK-1. Neat Mg-CUK-1 is provided for comparison

Figure S7. Survey XPS spectra of Mg-CUK-1 before and loading with Ni and Ru.

Figure S8. Survey XPS spectra of Mg-CUK-1 below 200 eV binding energy before and after loading with Ni and Ru.

Figure S9. High-resolution XPS spectra for the C 1s and Ru 3d region of Mg-CUK-1 before and loading with Ni and Ru.

Figure S10. High-resolution XPS spectra for the Ru 3p region of Mg-CUK-1 before and loading with Ni and Ru.

Figure S11. High-resolution XPS spectra for the Mg 2p region of Mg-CUK-1 before and loading with Ni and Ru.

Figure S12. High-resolution XPS spectra for the O 1s region of Mg-CUK-1 before and loading with Ni and Ru.

Figure S13. High-resolution XPS spectra for the N 1s region of Mg-CUK-1 before and loading with Ni and Ru.

Figure S14. Transmission electron micrograph of 0.3Ru2.7Ni Mg-CUK-1.

Figure S15. Comparison of previous hybrid sorbent/catalyst isothermal reactor systems for carbon capture and conversion to methane using metal oxide/carbonate CO_2 sorbents with present work (0.3Ru2.7Ni Mg-CUK-1) under temperature-swing conditions. Data is sorted based on included metal catalyst. Dashed line represents parity between CO_2 uptake and CH_4 generation indicating complete CO_2 utilisation. It is important to mention that all but two of the literature performance data included for comparison were conducted under isothermal conditions. The work reported here uses a temperature-swing operation to maximise CO_2 uptake at room temperature in the physisorption-based sorbent, Mg-CUK-1, before hydrogenation at 300 °C. Further details regarding the reported literature can be found in Table S6.

Table S1. Physicochemical properties of Ni- and Ru-loaded Mg-CUK-1. CO₂ Uptake at 0 °C, 104.9 kPa, BET surface area calculated from N₂ adsorption/desorption isotherms collected at - 196.15 °C and catalyst loading obtained from ICP-OES.

Sample	CO ₂ Uptake	BET surface are	ea Catalyst Loading
	(mmol g ⁻¹)	(m ² g ⁻¹)	(wt%)
Mg-CUK-1	5.28	542.3 ± 4.4	-
3Ni Mg-CUK-1	4.41	389.7 ± 4.1	3.10
3Ru Mg-CUK-1	4.11	386.7 ± 7.5	3.41
6Ni Mg-CUK-1	4.07	365.9 ± 3.8	6.22
7Ru Mg-CUK-1	3.76	360.1 ± 7.0	7.40
0.3Ru2.7Ni Mg-CUK-1	4.39	387.2 ± 4.0	0.34 (Ru) 2.73 (Ni)

Table S2. Possible reaction pathways governing the catalytic thermal hydrogenation of CO₂

Reaction Name	Reaction Formula	∆Н _{298к} [kJ mol ⁻¹]
CO ₂ methanation (Sabatier) reaction	$CO_2 + 4H_2 \rightleftharpoons CH_4 + 2H_2O$	-165 1
Reverse water-gas shift	$CO_2 + H_2 \rightleftharpoons CO + H_2O$	41 2
CO methanation	$CO + 3H_2 \rightleftharpoons CH_4 + H_2O$	-206 3

Table S3. Binding energy of peak positions for Ni 2p region of 3Ni- and 0.3Ru2.7Ni-loaded Mg-CUK-1 before (neat) and after ten carbon capture and conversion performance tests (spent).

Sample	Ni A (Ni ⁰)	Ni B	Ni D	Ni E
3Ni Neat	853.48	855.47	860.99	863.97
3Ni Spent	-	855.35	861.52	864.15
0.3Ru2.7Ni Neat	853.75	855.64	861.37	863.81
0.3Ru2.7Ni Spent	853.31	855.15	860.93	862.42

Sample	Ni A (Ni⁰)	Ni B	Ni D	Ni E
3Ni Neat	18.04	48.56	27.62	5.78
3Ni Spent	0	59.46	31.84	8.7
0.3Ru2.7Ni Neat	18.58	47.61	27.67	6.14
0.3Ru2.7Ni Spent	16.54	53.47	18.15	11.84

Table S4. Peak area percentage for Ni 2p region of 3Ni- and 0.3Ru2.7Ni-loaded Mg-CUK-1 before (neat) and after ten carbon capture and conversion performance tests (spent) illustrating shift to lower binding energies.

Table S5. Comparison of Ni $2p_{3/2}$ peak areas as an approximation of the ratio of Ni²⁺ reduced to Ni⁰ for 3Ni- and 0.3Ru2.7Ni-loaded Mg-CUK-1 before (neat) and after ten carbon capture and conversion performance tests (spent).

Sample	Ni ⁰	Ni ²⁺
	(853 eV)	(855 eV)
3Ni Neat	27.09%	72.91%
3Ni Spent	0%	100%
0.3Ru2.7Ni Neat	28.07%	71.93%
0.3Ru2.7Ni Spent	23.63%	76.37%

Dual Functional Material	CO ₂ Adsorption	dsorption CH ₄ generation			Ref
Catalyst-Sorbent-Support	Operation Conditions	Adsorption	Operation	Production	
		capacity	Conditions	capacity	
		(mmol CO ₂ g ⁻		(mmol CH₄ g⁻	
		1)		¹)	
0.3Ru2.7Ni Mg-CUK-1	15%CO ₂ /Air, 25 °C, 1 h	1.37-1.40	100% H ₂ , 300 °C,	1.37-1.40	This
			10 min		Work
1%Ru-10%"Na ₂ O"/γ-Al ₂ O ₃	400 ppm CO ₂ /Air, 25 °C, >2 h	0.55	15% H ₂ /N ₂ , 300	0.3	1
	(Dry Air)		°C, 2 h		
1%Ru-10%"Na ₂ O"/γ-Al ₂ O ₃	400 ppm CO ₂ /Air, 25 °C, >4 h	1.3	15% H ₂ /N ₂ , 300	1.04	1
	(Humid Air; ~ 2% H ₂ O, 90%		°C, 2 h		
	RH)				
5%Ru-6.1%Na ₂ O/γ-Al ₂ O ₃	7.5% CO ₂ /N ₂ , 320 °C, 30 min	0.40	5% H ₂ /N ₂ , 320 °C,	0.24	2
(tablets)			30 min		
5%Ru-10%CaO/ γ-Al ₂ O ₃	10% CO ₂ /N ₂ , 320 °C, 30 min	0.41	4% H ₂ /N ₂ , 320 °C,	0.31	3
			2 h		
5%Ru-10%CaO/Al ₂ O ₃ tableted	7.5% CO ₂ , 15% H ₂ O, 4.5% O ₂ ,	0.23	5% H ₂ /N ₂ , 320 °C,	0.13	4
powder (BASF)	73% N ₂ , 320 °C, 20 min		60 min		

Table S6. Summary of literature studies involving dual functional materials for combined CO₂ capture and methanation

5%Ru-10%CaO/Al ₂ O ₃ Pellets	7.5% CO ₂ , 15% H ₂ O, 4.5% O ₂ ,	0.13	5% H ₂ /N ₂ , 320 °C,	0.14	4
(TH200)	73% N ₂ , 320 °C, 20 min		60 min		
5%Ru-10%CaO/Al ₂ O ₃ Pellets	7.5% CO ₂ , 15% H ₂ O, 4.5% O ₂ ,	0.16	5% H ₂ /N ₂ , 320 °C,	0.20	4
(TH100)	73% N ₂ , 320 °C, 20 min		60 min		
5%Ru-10%CaO/Al ₂ O ₃ Pellets	7.5% CO ₂ , 15% H ₂ O, 4.5% O ₂ ,	0.17	5% H ₂ /N ₂ , 320 °C,	0.12	4
(SAS200)	73% N ₂ , 320 °C, 20 min		60 min		
5%Ru-10%CaO/Al ₂ O ₃	10% CO ₂ /N ₂ , 320 °C, 30 min	-	4% H ₂ /N ₂ , 320 °C,	0.50	5
			2 h		
5%Ru-10%K2CO3/AI2O3	10% CO ₂ /N ₂ , 320 °C, 30 min	-	4% H ₂ /N ₂ , 320 °C,	0.91	5
			2 h		
5%Ru-10%Na ₂ CO ₃ /Al ₂ O ₃	10% CO ₂ /N ₂ , 320 °C, 30 min	-	4% H ₂ /N ₂ , 320 °C,	1.05	5
			2 h		
5%Ru-10%Na2CO3/Al2O3	5% CO ₂ /N ₂ , 320 °C, 30 min	0.52	2% H ₂ /N ₂ , 320 °C,	0.39	5
			30 min		
10%Ni-6.1%"Na ₂ O"/Al ₂ O ₃ (1g)	7.5% CO ₂ /N ₂ , 320 °C, 30 min	0.40	15% H ₂ /N ₂ , 320	0.28	6
			°C, 1 h		
10%Ni-6.1%"Na ₂ O"/Al ₂ O ₃ (1g)	7.5% CO ₂ , 4.5% O ₂ , 15% H ₂ O,	0.11	15% H ₂ /N ₂ , 320	0	6
	73% N ₂ , 320 °C, 20 min		°C, 1 h		
5%Ru-6.1%"Na ₂ O"/Al ₂ O ₃	7.5% CO ₂ , 4.5% O ₂ , 15% H ₂ O,	0.39	15% H ₂ /N ₂ , 320	0.29	6
(0.1g)	73% N ₂ , 320 °C, 20 min		°C, 1 h		

5%Ru-6.1%"Na ₂ O"/Al ₂ O ₃	10% CO ₂ /N ₂ , 320 °C, 30 min	0.65	10% H ₂ /N ₂ , 320	0.61	6
			°C, 1 h		
0.5%Rh-6.1%"Na ₂ O"/Al ₂ O ₃	10% CO ₂ /N ₂ , 320 °C, 30 min	0.63	10% H ₂ /N ₂ , 320	0.42	6
			°C, 1 h		
5%Ru-7.01%"K ₂ O"/Al ₂ O ₃	10% CO ₂ /N ₂ , 320 °C, 30 min	0.50	10% H ₂ /N ₂ , 320	0.47	6
			°C, 1 h		
5%Ru-10%CaO/Al ₂ O ₃	10% CO ₂ /N ₂ , 320 °C, 30 min	0.68	10% H ₂ /N ₂ , 320	0.61	6
			°C, 1 h		
5%Ru-10%MgO/Al ₂ O ₃	10% CO ₂ /N ₂ , 320 °C, 30 min	0.24	10% H ₂ /N ₂ , 320	0.21	6
			°C, 1 h		
1%Ru-10%Ni-	7.5% CO ₂ , 4.5% O ₂ , 15% H ₂ O,	0.52	15% H ₂ /N ₂ , 320	0.38	7
6.1%"Na2O"/Al2O3	73% N ₂ , 320 °C, 20 min		°C, 1 h		
1%Ru-6.1%"Na ₂ O"/Al ₂ O ₃	7.5% CO ₂ , 4.5% O ₂ , 15% H ₂ O,	0.41	15% H ₂ /N ₂ , 320	0.31	7
	73% N ₂ , 320 °C, 20 min		°C, 1 h		
0.1%Ru-10%Ni-	7.5% CO ₂ , 4.5% O ₂ , 15% H ₂ O,	0.50	15% H ₂ /N ₂ , 320	0.32	7
6.1%"Na2O"/Al2O3	73% N ₂ , 320 °C, 20 min		°C, 1 h		
0.1%Ru-6.1%"Na ₂ O"/Al ₂ O ₃	7.5% CO ₂ , 4.5% O ₂ , 15% H ₂ O,	0.44	15% H ₂ /N ₂ , 320	0.27	7
	73% N ₂ , 320 °C, 20 min		°C, 1 h		
0.1%Pt-10%Ni-	7.5% CO ₂ , 4.5% O ₂ , 15% H ₂ O,	0.39	15% H ₂ /N ₂ , 320	0.16	7

1%Pt-10%Ni-	7.5% CO ₂ , 4.5% O ₂ , 15% H ₂ O,	0.35	15% H ₂ /N ₂ , 320	0.25	7
6.1%"Na ₂ O"/Al ₂ O ₃	73% N ₂ , 320 °C, 20 min		°C, 1 h		
0.1%Pd-10%Ni-	7.5% CO ₂ , 4.5% O ₂ , 15% H ₂ O,	0.47	15% H ₂ /N ₂ , 320	0.18	7
6.1%"Na2O"/Al2O3	73% N ₂ , 320 °C, 20 min		°C, 1 h		
10%Ni-6.1%"Na2O"/Al2O3	7.5% CO ₂ , 4.5% O ₂ , 15% H ₂ O,	0.11	15% H ₂ /N ₂ , 320	0.00	7
	73% N ₂ , 320 °C, 20 min		°C, 1 h		
0.5%Ru-6.1%"Na ₂ O"/Al ₂ O ₃	415 ppm CO ₂ , 20% O ₂ , 79%	0.2	15% H ₂ /N ₂ , 320	0.15	8
	N ₂ , 320 °C, 45 min		°C, 45 min		
1% Ni/CeO ₂ -CaO	15% CO ₂ /N ₂ , 550 °C, 60 min	15.3	100% H ₂ , 550 °C,	8.0	9
(physically mixed)			60 min		
5%Ru/CeO ₂ -MgO	65% CO ₂ /N ₂ , 300 °C, 60 min	4.25	5%H ₂ /N ₂ , 300 °C,	3.36	10
(physically mixed)			60 min		
10%Ni-CaO	10% CO ₂ , 10% H ₂ O, 80% N ₂ ,	8.96	90% H ₂ /N ₂ , 500	8.34	- 11
	500 °C, 120 min		°C, 230 min		
10%Ni-CaO	10% CO ₂ , 10% H ₂ O, 80% N ₂ ,	15.49	90% H ₂ /N ₂ , 600	14.94	11
	600 °C, 120 min		°C, 230 min		
10%Ni-CaO	10% CO ₂ , 10% H ₂ O, 80% N ₂ ,	16.22	90% H ₂ /N ₂ , 700	4.7	11
	700 °C, 120 min		°C, 230 min		

Temperature-Swing Reactor Operating Conditions

Isothermal Reactor Operating Conditions

References

- 1. C. Jeong-Potter, M. Abdallah, C. Sanderson, M. Goldman, R. Gupta and R. Farrauto, *Applied Catalysis B: Environmental*, 2021, **307**, 120990.
- 2. S. Wang, E. T. Schrunk and H. Mahajan, *Catalysts*, 2017, 7, 88.
- 3. M. S. Duyar, M. A. A. Trevino and R. J. Farrauto, *Applied Catalysis B: Environmental*, 2015, **168**, 370-376.
- 4. Q. Zheng, R. Farrauto and A. Chau Nguyen, *Industrial & Engineering Chemistry Research*, 2016, **55**, 6768-6776.
- 5. M. S. Duyar, S. Wang, M. A. Arellano-Trevino and R. J. Farrauto, *Journal of CO*₂ *Utilization*, 2016, **15**, 65-71.
- 6. M. A. Arellano-Treviño, Z. He, M. C. Libby and R. J. Farrauto, *Journal of CO*₂ *Utilization*, 2019, **31**, 143-151.
- 7. M. A. Arellano-Treviño, N. Kanani, C. W. Jeong-Potter and R. J. Farrauto, *Chemical Engineering Journal*, 2019, **375**, 121953.
- 8. C. Jeong-Potter and R. Farrauto, *Applied Catalysis B: Environmental*, 2021, **282**, 119416.
- 9. H. Sun, Y. Wang, S. Xu, A. I. Osman, G. Stenning, J. Han, S. Sun, D. Rooney, P. T. Williams and F. Wang, *Fuel*, 2021, **286**, 119308.
- 10. H. Sun, Y. Zhang, S. Guan, J. Huang and C. Wu, *Journal of CO2 Utilization*, 2020, **38**, 262-272.
- 11. S. B. Jo, J. H. Woo, J. H. Lee, T. Y. Kim, H. I. Kang, S. C. Lee and J. C. Kim, *Sustainable Energy & Fuels*, 2020, **4**, 4679-4687.