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S1: Supporting information regarding modern Zwischgold samples 

 
Fig. S 1: a) EDX spectrum of a relatively well-preserved region of the 35-year sample, imaged by b) SEM and c) Au Mɑ and 
d) Ag Lɑ EDX mapping. Note that C and Al were deposited to protect the sample from ion-deposition during FIB cross-
sectioning with a Ga ion beam. A presence of Cu would be observed by the strong Cu Lɑ and Lβ peaks at 930 and 950 eV, just 
below the weak Ga Ll peak at 957 eV and strong Lɑ peak at 1098 eV. Sub-panel (b) reproduced from [Wu 2018].  

 

 
Fig. S 2: X-ray fluorescence spectra of Recent (green) and 10-year (red) Zwischgold and their bole substrates (blue). The bole 
substrate spectrum has been subtracted from the spectra of the applied Zwischgold leaves. All peaks in the metal leaf spectra 
can be attributed to Au and Ag, while a significant presence of other metals such as Cu can be excluded. 
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Fig. S 3: Slice through the 35-year PXCT tomogram in (a) δ-values and (b) segmented according to the ranges shown in Fig. 
3 in the main text. (c) Depth profile of the single-layered section of the sample, aligned to the main gold-rich layer. 

S2: Supporting information regarding the Mary sample 

 
Fig. S 4: a) Bright field and b) dark field visible light microscopy (50x magnification) cross-section images of a sample taken 
from an adjacent region to the Mary sample. 

 



 
Fig. S 5: SEM-EDX measurements on the same sample cross-section in Fig. S 4 (adjacent to the Mary sample): (a) SEM-BSE 
image; (b) overlay of BSE image and EDX elemental maps; (c1-6): EDX elemental maps for Ag, Au, C, O, Fe and Zn; (d) 
EDX sum spectrum of the observation site. 

 

 
Fig. S 6: Slice through the Mary PXCT tomogram in (a) δ-values and (b) segmented according to the ranges shown in Fig. 6 
in the main text. (c) Depth profile of the sample, aligned to the main gold-rich layer. 

 



 
Fig. S 7: SEM-SE image of the FIB prepared sample pillar for Mary PXCT measurement. Scale bar: 2 µm. 

 

S3: Supporting information regarding the Sedrun Nicolaus and Bishop 

 
Fig. S 8: Slice through the Nicolaus border PXCT tomogram in (a) δ-values and (b) segmented according to the ranges shown 
in Fig. 6 in the main text. (c) Depth profile of the sample, aligned to the main gold-rich layer. 

 



 
Fig. S 9: Slice through the Nicolaus PXCT tomogram in (a) δ-values and (b) segmented according to the ranges shown in Fig. 
6 in the main text. (c) Depth profile of the sample, aligned to the metal layer. 

 

 
Fig. S 10: Slice through the Bishop PXCT tomogram in (a) δ-values and (b) segmented according to the ranges shown in Fig. 
6 in the main text. (c) Depth profile of the sample, aligned to the metal layer. 

 



 
Fig. S 11: SEM-BSE images of a sample cross-section taken in an adjacent region of the Nicolaus sample: (a) an observation 
site containing corroded Zwischgold with single Au layer (Mag. 10kx); (b) an observation site containing corroded Zwischgold 
with multiple Au layers (Mag. 20kx); (c) thickness measurements for the Au layers (Mag. 80kx).  

 
 

 
Fig. S 12: SEM-EDX measurements of a sample cross-section taken in an adjacent region to the Nicolaus Border sample: (a) 
SEM-BSE image; (b) overlay of BSE image and EDX elemental maps; (c1-3) EDX elemental maps for Ag, Au and S; (d) 
EDX sum spectrum of the observation site. Note that S map shows some cross-talk from the Au map, due to overlap of the 
Au M and S K fluorescence peaks. 

 
 
 



 
Fig. S 13: STEM image and STEM-EDX element maps of a cross-section TEM-lamella taken in a region adjacent to the 
Nicolaus sample. 

 

 
Fig. S 14: STEM image and STEM-EDX element maps of a cross-section TEM-lamella taken in a region adjacent to the 
Bishop sample. 

 

 

 



Table S 1: Calculated δ and β values at photon energy of 8.7 keV for materials of interest in Zwischgold samples. 

Material Type Mass density 
(g/cm3) 

Number density 
(x1022) 

δ (x10-6) β (x10-6) 

Au Metal 19.3 5.90 40.1 3.74 

Ag Metal 10.49 5.86 25.2 2.04 

Ag2S Corrosion product 7.2 1.75 17.6 1.29 

AgCl Corrosion product 5.5 2.31 13.6 0.934 

Fe2O3 Bole component 5.24 1.98 13.5 1.06 

ZnSO4 Paint siccative 3.54 1.32 9.19 0.145 

ZnCO3 Paint siccative 3.5 1.68 8.90 0.108 

Mg3Si4O10(OH)2 Bole component 2.75 4.39 7.46 0.004 

SiO2 Bole component 2.65 2.66 7.13 0.624 

Al2Si2O5(OH)4 Bole component 2.6 0.616 7.05 0.322 

CaCO3 Bole component 2.71 1.36 6.83 2.85 

FeO(OH) Bole component 3.8 1.79 6.77 4.84 

Na2SiO3 Bole component 2.4 1.18 6.45 0.304 

(CH2)x Oil/wax binder 0.9 3.86 2.81 0.00281 

Ga FIB ion source 5.91 5.10 13.7 0.332 

Al Conductive coating 2.7 6.02 7.23 0.114 

Amorphous C FIB protection layer 2 10.03 5.50 0.0076 

 

S4: Supporting XPS depth profile measurements 

The elemental composition of two samples were measured by X-ray photoelectron spectroscopy 
(XPS) as a function of sputter depth. The samples included a Zwischgold leaf taken from the same 
package as the Recent PXCT sample and a region adjacent to the 35-year PXCT sample. 
The measurements were performed with a PHI Quantera II (Physical Electronics) spectrometer and a 
micro-focused, monochromated Al Kɑ source (photon energy of 1486.74 eV). Access to the 
instrument was granted by Helmholtz-Institut Erlangen-Nürnberg (HI ERN). Sputtering was 
performed with Ar accelerated with 500 V onto an area of 1x1 μm2, which corresponds to a sputter 
rate of about 10 nm per minute (manufacturer’s calibration). Sputtering was performed for 20 seconds 
(about 3nm depth) per sputter cycle for the first 12 cycles and then 4 minutes (about 40 nm) per cycle 
for 21 sputter cycles. XPS spectra were measured after each cycle according to the parameters listed 
in Table S 2. 
 
Table S 2: Parameters used for XPS measurements 

Peak Attribution Binding Energy 
Region (eV) 

Step Size (eV) Pass Energy (eV) Dwell Time (ms) 

Au 4f 80 – 88 0.1 13 600 
Ag 3d 363 – 375 0.1 13 600 
S 2p 156 – 162.5 0.1 13 600 
C 1s 280 – 290 0.25 140 400 
O 1s 526 – 536 0.25 140 400 
I 3d5 614 – 620 0.25 140 400 
Cl 2p 193 – 201 0.25 140 400 

 
 



 
Fig. S 15: XPS depth profile of a Zwischgold leaf taken from the same package as the Recent sample. The intensity of the Au 
4f, Ag 3d, and S 2p photoelectron peaks were tracked as a function of sputter depth. a) The first 12 sputter-measure cycles 
show detail in the first 100 nm below the surface. b) The full measurement set. 

 

 
Fig. S 16: (a-b) XPS depth profile of a region adjacent to the 35-year sample. (c) Sulfur 2p peaks from cycles 1-16 indicating 
presence of a sulfide compound (no signal in sulfate region). Observed peak shifts are due to charging of the sample. (d) 
Chlorine 2p peaks from cycles 12-23. 

 

S5: Details of the depth profile analysis 

The PXCT tomograms of the Zwischgold samples show foils with significant curvature and holes. 
Firstly, segmented tomograms were rotated in Avizo so that the foils were roughly aligned in the XY 
plane. A Python script was then run on the data via Avizo to define the reference plane position, shift 
the data columns to align this reference plane, and finally to sum the contributions from each segment 



in each layer of the shifted tomogram. Exact details of the calculation can be read from the 
FoilDepthHistogram.pyscro code provided in the following section. 
The position of the reference plane was calculated by examining each column of pixels in turn and 
finding the middle pixel of the Au segment (or the Au+Ag segment in cases of insufficient Au 
present) in that column. Linear interpolation was used to fill in gaps and the surface plane was 
smoothed by a Gaussian filter with a sigma of three pixels. The reference plane was later shifted from 
the middle of the segment layer to the upper surface by a vertical shift equal to half of the FWHM of 
the Au (or Au+Ag) segment in the depth profile.  
 

FoilDepthHistogram.pyscro 
import numpy, scipy, scipy.interpolate, scipy.ndimage.filters, os.path 
 
class FoilDepthHistogram(PyScriptObject): 
 def __init__(self): 
  #self.data.visible = True 
  self.ports.data.valid_types = ['HxUniformLabelField3'] 
  self.port_dest = HxConnection(self, "portDestination", "Destination") 
  self.port_dest.valid_types = ['HxUniformLabelField3'] 
  self.do_it = HxPortDoIt(self, 'doIt', 'Apply')  # get handle to the Apply button 
  self.do_it.buttons[0].enabled=False             # disable it until ready 
  self.plane = HxPortGeneric(self,'plane_list', 'Plane Materials') 
 def update(self): 
  if not (self.data.source() is None): 
   data_range = int(self.ports.data.source().range[1]) 
   items_list = [] 
   if len(self.plane.items)==0: 
    for x in range(data_range+1): 
     items_list.append(HxPortGeneric.GenericCheckBox(caption=str(x),checked=x in [1,2,3,4])) 
    self.plane.items = items_list 
   if any([self.plane.items[x].checked for x in range(data_range+1)]): 
    self.do_it.buttons[0].enabled=True 
   else: 
    self.do_it.buttons[0].enabled=False 
  else: 
   self.do_it.buttons[0].enabled=False 
 
  PyScriptObject.update(self) 
 
 def __plot_histogram(self): 
  if self.__corr_plot == None : 
   self.__corr_plot = hx_project.create('HxCorrelationPlot') 
  self.__corr_plot.ports.source1.connect(self.ports.data.source()) 
  self.__corr_plot.ports.source2.connect(self.__grad_mag) 
  self.__corr_plot.ports.action.buttons[0].hit = True 
  self.__corr_plot.fire() 
 
  self.viewerPlot = hx_project.create('HxPlot2Viewer') 
  self.viewerPlot.ports.PlotModule.connect(self.__corr_plot) 
  self.viewerPlot.viewer_mask = 65520 
  self.viewerPlot.ports.actions.toggles[1].checked = HxPortToggleList.Toggle.CHECKED 
  self.viewerPlot.fire() 
 
   
 def MakeFoilPlane(self, data, plane_material,guide_plane=None,width=numpy.infty): 
  if guide_plane is None: 
   guide_plane = numpy.full(data.shape[:2],data.shape[2]/2) 
  width = max(width,1) 
  foil_plane = numpy.full(data.shape[:2],numpy.nan) 
  I=[] 
  J=[] 
  V=[] 
  for x in range(data.shape[0]): 
   for y in range(data.shape[1]): 
    line = max(0,int(guide_plane[x,y])-width) 
+numpy.where(numpy.in1d(data[x,y,max(0,int(guide_plane[x,y])-width) 
:min(data.shape[2],int(guide_plane[x,y])+width)].flatten(),plane_material))[0] 
min(data.shape[2],int(guide_plane[x,y])+width) 
    if len(line) > 0: 
     foil_plane[x,y] = numpy.median(line) 
     I.append(x) 



     J.append(y) 
     V.append(numpy.median(line)) 
   
  I = numpy.array(I) 
  J = numpy.array(J) 
  V = numpy.array(V) 
  grid_y, grid_x = 
numpy.meshgrid(numpy.arange(foil_plane.shape[1]),numpy.arange(foil_plane.shape[0])) 
  edges = numpy.ones(foil_plane.shape) 
  edges[1:-1,1:-1] = 0 
  edgesi = numpy.where(edges) 
  foil_plane[edgesi] = scipy.interpolate.griddata(zip(I,J), V, edgesi, method='nearest') 
  bad_points = ~numpy.isfinite(foil_plane) 
  foil_plane[bad_points] = scipy.interpolate.griddata(zip(grid_x[~bad_points], 
grid_y[~bad_points]), foil_plane[~bad_points], (grid_x[bad_points], grid_y[bad_points]), 
method='linear') 
  return foil_plane 
   
 def RefinePlane(self, foil_plane,sigma): 
  print "sigma is: ", sigma 
  smooth_plane = scipy.ndimage.filters.gaussian_filter(foil_plane, sigma=sigma) 
  diff_plane = numpy.abs(foil_plane-smooth_plane) 
  outliers = diff_plane>2*numpy.median(diff_plane) 
  print "diff is: ", numpy.median(diff_plane), "\t(", 
100.0*numpy.sum(outliers)/float(foil_plane.shape[0]*foil_plane.shape[1]), "%)" 
  edges = numpy.ones(foil_plane.shape) 
  edges[1:-1,1:-1] = 0 
  edgesi = numpy.where(edges) 
  outliers = numpy.logical_or(outliers,edges==1) 
  foil_plane2 = foil_plane.copy() 
  grid_y, grid_x = 
numpy.meshgrid(numpy.arange(foil_plane.shape[1]),numpy.arange(foil_plane.shape[0])) 
  foil_plane2[edgesi] = scipy.interpolate.griddata(zip(grid_x[~outliers], grid_y[~outliers]), 
foil_plane2[~outliers], edgesi, method='nearest') 
  outliers = numpy.logical_and(outliers,edges==0) 
  foil_plane2[outliers] = scipy.interpolate.griddata(zip(grid_x[~outliers], 
grid_y[~outliers]), foil_plane2[~outliers], (grid_x[outliers], grid_y[outliers]), 
method='linear') 
  bad_points = ~numpy.isfinite(foil_plane2) 
  if numpy.sum(bad_points)>0: 
   foil_plane2[bad_points] = scipy.interpolate.griddata(zip(grid_x[~bad_points], 
grid_y[~bad_points]), foil_plane2[~bad_points], (grid_x[bad_points], grid_y[bad_points]), 
method='nearest') 
  return foil_plane2, numpy.median(diff_plane) 
   
 def compute(self): 
  if not self.do_it.was_hit: 
   return 
  print "compute!" 
  data = self.data.source().get_array().copy() 
  plane_material = numpy.where([self.plane.items[x].checked for x in 
range(int(self.ports.data.source().range[1])+1)])[0] 
   
  foil_plane = self.MakeFoilPlane(data, plane_material) 
  [foil_plane, diff] = self.RefinePlane(foil_plane,sigma=0.2*numpy.min(foil_plane.shape)) 
  foil_plane = self.MakeFoilPlane(data, plane_material, foil_plane, width=int(diff)) 
  [foil_plane, diff] = self.RefinePlane(foil_plane,sigma=3) 
  foil_plane = foil_plane.astype(int) 
   
  padded_data = numpy.pad(data,((0,0),(0,0),(data.shape[2],0)),'constant') 
  print padded_data.shape, padded_data[1,1,:].shape 
  for x in range(data.shape[0]): 
   for y in range(data.shape[1]): 
    padded_data[x,y,:] = numpy.roll(padded_data[x,y,:],-foil_plane[x,y]) 
  padded_data = padded_data[:,:,data.shape[2]-numpy.amax(foil_plane):-numpy.amin(foil_plane)] 
  plane_height = padded_data.shape[2]-numpy.amax(foil_plane) 
  del foil_plane 
   
  DepthProfile = numpy.zeros((numpy.amax(data)+1,padded_data.shape[2])) 
  bin_set = list(numpy.arange(-1,numpy.amax(data)+1)+0.5) 
  for z in range(padded_data.shape[2]): 
   DepthProfile[:,z] = numpy.histogram(padded_data[:,:,z],bins=bin_set)[0] 
   
  source = self.data.source() 
  output = source.duplicate() 
  [s_base, s_ext] = os.path.splitext(source.name) 
  if s_ext == '.am': 



   output.name = s_base+".rolled" 
  else: 
   output.name = source.name+".rolled" 
  histogram_filename = "L:\Analysis\%s_histogram.txt" % output.name 
  output.set_array(padded_data) 
  BB = numpy.array(source.bounding_box) 
  print BB 
  BB[1,2] = (BB[1,2]-BB[0,2])/(data.shape[2]-1)*(padded_data.shape[2]-1) + BB[0,2] 
  print BB 
  output.bounding_box = BB 
  DepthProfileRange = numpy.linspace(0,BB[1,2]-BB[0,2],num=padded_data.shape[2]) 
  DepthProfileRange = DepthProfileRange-DepthProfileRange[plane_height] 
  hx_project.add(output) 
  print 'Pixel size is ', (numpy.array(source.bounding_box[1]) - 
numpy.array(source.bounding_box[0]))/numpy.subtract(data.shape,1) 
   
  header = 'Depth\t' 
  for i in range(DepthProfile.shape[0]): 
   header += 'Material %i\t'%i 
  DepthProfile = numpy.vstack((DepthProfileRange,DepthProfile)) 
  
numpy.savetxt(histogram_filename,DepthProfile.T,fmt='%1.3f\t'+'%i\t'*(DepthProfile.shape[0]-
1),header=header) 
  print 'Saved histogram to  ', histogram_filename 
   
  PyScriptObject.compute(self) 
 

S6: FIB-sectioning 

 
Fig. S 17: FIB-sectioning of the Nicolaus Border sample resulted in strong curtaining effects due to strong charging and 
heterogeneity (varying sputter rates) of the sample materials. 

 



S7: Why discard the Beta part of the data? 

The ptychographic imaging used in PXCT produces both the absorption (Beta) and dispersion (Delta) 
parts of the sample material’s refractive index. However, the Beta part of the data was discarded in 
this work, as is often the case with hard X-ray PXCT measurements. Figure S18 demonstrates why 
this is the case. The four material peaks are clearly much broader in the Beta axis and much better 
separated along the Delta axis. Note that while the Delta axis spans a range more than four times that 
of the Beta axis in Figure S18, the line running through the peaks is close to vertical and thus 
indicates that almost all of the contrast is contained within the Delta channel. This pattern is typical 
for hard X-ray PXCT measurements because absorption effects are usually very weak and both Delta 
and Beta tend to both scale roughly proportional to the electron density of the material. Exceptions to 
this rule can occur when the photon energy is close to a transition resonance (not the case in the 
measurements presented in this work) where the observed Beta and Delta values can differ 
significantly from the non-resonant values.  

 
Fig. S 18 Bivariate histogram of tomogram voxels for the 10-year PXCT sample. Each pixel in this image indicates the number 
of voxels from the tomogram having Beta and Delta values corresponding to the position of the pixel on the plot axes. Summing 
all pixels along each row gives the Delta histogram shown in Figure 3 of the main text (green line), while summing along each 
column would give a Beta histogram. The four peaks correspond to (from top to bottom) gold, silver, carbon and air. 
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