
Supplementary Materials of “A modern look at a medieval bilayer metal leaf: nano-tomography
of Zwischgold”

S1: Supporting information regarding modern Zwischgold samples

Fig. S 1: a) EDX spectrum of a relatively well-preserved region of the 35-year sample, imaged by b) SEM and c) Au Mɑ and
d) Ag Lɑ EDX mapping. Note that C and Al were deposited to protect the sample from ion-deposition during FIB cross-
sectioning with a Ga ion beam. A presence of Cu would be observed by the strong Cu Lɑ and Lβ peaks at 930 and 950 eV, just
below the weak Ga Ll peak at 957 eV and strong Lɑ peak at 1098 eV. Sub-panel (b) reproduced from [Wu 2018].

Fig. S 2: X-ray fluorescence spectra of Recent (green) and 10-year (red) Zwischgold and their bole substrates (blue). The bole
substrate spectrum has been subtracted from the spectra of the applied Zwischgold leaves. All peaks in the metal leaf spectra
can be attributed to Au and Ag, while a significant presence of other metals such as Cu can be excluded.

Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2022

Fig. S 3: Slice through the 35-year PXCT tomogram in (a) δ-values and (b) segmented according to the ranges shown in Fig.
3 in the main text. (c) Depth profile of the single-layered section of the sample, aligned to the main gold-rich layer.

S2: Supporting information regarding the Mary sample

Fig. S 4: a) Bright field and b) dark field visible light microscopy (50x magnification) cross-section images of a sample taken
from an adjacent region to the Mary sample.

Fig. S 5: SEM-EDX measurements on the same sample cross-section in Fig. S 4 (adjacent to the Mary sample): (a) SEM-BSE
image; (b) overlay of BSE image and EDX elemental maps; (c1-6): EDX elemental maps for Ag, Au, C, O, Fe and Zn; (d)
EDX sum spectrum of the observation site.

Fig. S 6: Slice through the Mary PXCT tomogram in (a) δ-values and (b) segmented according to the ranges shown in Fig. 6
in the main text. (c) Depth profile of the sample, aligned to the main gold-rich layer.

Fig. S 7: SEM-SE image of the FIB prepared sample pillar for Mary PXCT measurement. Scale bar: 2 µm.

S3: Supporting information regarding the Sedrun Nicolaus and Bishop

Fig. S 8: Slice through the Nicolaus border PXCT tomogram in (a) δ-values and (b) segmented according to the ranges shown
in Fig. 6 in the main text. (c) Depth profile of the sample, aligned to the main gold-rich layer.

Fig. S 9: Slice through the Nicolaus PXCT tomogram in (a) δ-values and (b) segmented according to the ranges shown in Fig.
6 in the main text. (c) Depth profile of the sample, aligned to the metal layer.

Fig. S 10: Slice through the Bishop PXCT tomogram in (a) δ-values and (b) segmented according to the ranges shown in Fig.
6 in the main text. (c) Depth profile of the sample, aligned to the metal layer.

Fig. S 11: SEM-BSE images of a sample cross-section taken in an adjacent region of the Nicolaus sample: (a) an observation
site containing corroded Zwischgold with single Au layer (Mag. 10kx); (b) an observation site containing corroded Zwischgold
with multiple Au layers (Mag. 20kx); (c) thickness measurements for the Au layers (Mag. 80kx).

Fig. S 12: SEM-EDX measurements of a sample cross-section taken in an adjacent region to the Nicolaus Border sample: (a)
SEM-BSE image; (b) overlay of BSE image and EDX elemental maps; (c1-3) EDX elemental maps for Ag, Au and S; (d)
EDX sum spectrum of the observation site. Note that S map shows some cross-talk from the Au map, due to overlap of the
Au M and S K fluorescence peaks.

Fig. S 13: STEM image and STEM-EDX element maps of a cross-section TEM-lamella taken in a region adjacent to the
Nicolaus sample.

Fig. S 14: STEM image and STEM-EDX element maps of a cross-section TEM-lamella taken in a region adjacent to the
Bishop sample.

Table S 1: Calculated δ and β values at photon energy of 8.7 keV for materials of interest in Zwischgold samples.

Material Type Mass density
(g/cm3)

Number density
(x1022)

δ (x10-6) β (x10-6)

Au Metal 19.3 5.90 40.1 3.74

Ag Metal 10.49 5.86 25.2 2.04

Ag2S Corrosion product 7.2 1.75 17.6 1.29

AgCl Corrosion product 5.5 2.31 13.6 0.934

Fe2O3 Bole component 5.24 1.98 13.5 1.06

ZnSO4 Paint siccative 3.54 1.32 9.19 0.145

ZnCO3 Paint siccative 3.5 1.68 8.90 0.108

Mg3Si4O10(OH)2 Bole component 2.75 4.39 7.46 0.004

SiO2 Bole component 2.65 2.66 7.13 0.624

Al2Si2O5(OH)4 Bole component 2.6 0.616 7.05 0.322

CaCO3 Bole component 2.71 1.36 6.83 2.85

FeO(OH) Bole component 3.8 1.79 6.77 4.84

Na2SiO3 Bole component 2.4 1.18 6.45 0.304

(CH2)x Oil/wax binder 0.9 3.86 2.81 0.00281

Ga FIB ion source 5.91 5.10 13.7 0.332

Al Conductive coating 2.7 6.02 7.23 0.114

Amorphous C FIB protection layer 2 10.03 5.50 0.0076

S4: Supporting XPS depth profile measurements

The elemental composition of two samples were measured by X-ray photoelectron spectroscopy
(XPS) as a function of sputter depth. The samples included a Zwischgold leaf taken from the same
package as the Recent PXCT sample and a region adjacent to the 35-year PXCT sample.
The measurements were performed with a PHI Quantera II (Physical Electronics) spectrometer and a
micro-focused, monochromated Al Kɑ source (photon energy of 1486.74 eV). Access to the
instrument was granted by Helmholtz-Institut Erlangen-Nürnberg (HI ERN). Sputtering was
performed with Ar accelerated with 500 V onto an area of 1x1 μm2, which corresponds to a sputter
rate of about 10 nm per minute (manufacturer’s calibration). Sputtering was performed for 20 seconds
(about 3nm depth) per sputter cycle for the first 12 cycles and then 4 minutes (about 40 nm) per cycle
for 21 sputter cycles. XPS spectra were measured after each cycle according to the parameters listed
in Table S 2.

Table S 2: Parameters used for XPS measurements

Peak Attribution Binding Energy
Region (eV)

Step Size (eV) Pass Energy (eV) Dwell Time (ms)

Au 4f 80 – 88 0.1 13 600
Ag 3d 363 – 375 0.1 13 600
S 2p 156 – 162.5 0.1 13 600
C 1s 280 – 290 0.25 140 400
O 1s 526 – 536 0.25 140 400
I 3d5 614 – 620 0.25 140 400
Cl 2p 193 – 201 0.25 140 400

Fig. S 15: XPS depth profile of a Zwischgold leaf taken from the same package as the Recent sample. The intensity of the Au
4f, Ag 3d, and S 2p photoelectron peaks were tracked as a function of sputter depth. a) The first 12 sputter-measure cycles
show detail in the first 100 nm below the surface. b) The full measurement set.

Fig. S 16: (a-b) XPS depth profile of a region adjacent to the 35-year sample. (c) Sulfur 2p peaks from cycles 1-16 indicating
presence of a sulfide compound (no signal in sulfate region). Observed peak shifts are due to charging of the sample. (d)
Chlorine 2p peaks from cycles 12-23.

S5: Details of the depth profile analysis

The PXCT tomograms of the Zwischgold samples show foils with significant curvature and holes.
Firstly, segmented tomograms were rotated in Avizo so that the foils were roughly aligned in the XY
plane. A Python script was then run on the data via Avizo to define the reference plane position, shift
the data columns to align this reference plane, and finally to sum the contributions from each segment

in each layer of the shifted tomogram. Exact details of the calculation can be read from the
FoilDepthHistogram.pyscro code provided in the following section.
The position of the reference plane was calculated by examining each column of pixels in turn and
finding the middle pixel of the Au segment (or the Au+Ag segment in cases of insufficient Au
present) in that column. Linear interpolation was used to fill in gaps and the surface plane was
smoothed by a Gaussian filter with a sigma of three pixels. The reference plane was later shifted from
the middle of the segment layer to the upper surface by a vertical shift equal to half of the FWHM of
the Au (or Au+Ag) segment in the depth profile.

FoilDepthHistogram.pyscro
import numpy, scipy, scipy.interpolate, scipy.ndimage.filters, os.path

class FoilDepthHistogram(PyScriptObject):
 def __init__(self):
 #self.data.visible = True
 self.ports.data.valid_types = ['HxUniformLabelField3']
 self.port_dest = HxConnection(self, "portDestination", "Destination")
 self.port_dest.valid_types = ['HxUniformLabelField3']
 self.do_it = HxPortDoIt(self, 'doIt', 'Apply') # get handle to the Apply button
 self.do_it.buttons[0].enabled=False # disable it until ready
 self.plane = HxPortGeneric(self,'plane_list', 'Plane Materials')
 def update(self):
 if not (self.data.source() is None):
 data_range = int(self.ports.data.source().range[1])
 items_list = []
 if len(self.plane.items)==0:
 for x in range(data_range+1):
 items_list.append(HxPortGeneric.GenericCheckBox(caption=str(x),checked=x in [1,2,3,4]))
 self.plane.items = items_list
 if any([self.plane.items[x].checked for x in range(data_range+1)]):
 self.do_it.buttons[0].enabled=True
 else:
 self.do_it.buttons[0].enabled=False
 else:
 self.do_it.buttons[0].enabled=False

 PyScriptObject.update(self)

 def __plot_histogram(self):
 if self.__corr_plot == None :
 self.__corr_plot = hx_project.create('HxCorrelationPlot')
 self.__corr_plot.ports.source1.connect(self.ports.data.source())
 self.__corr_plot.ports.source2.connect(self.__grad_mag)
 self.__corr_plot.ports.action.buttons[0].hit = True
 self.__corr_plot.fire()

 self.viewerPlot = hx_project.create('HxPlot2Viewer')
 self.viewerPlot.ports.PlotModule.connect(self.__corr_plot)
 self.viewerPlot.viewer_mask = 65520
 self.viewerPlot.ports.actions.toggles[1].checked = HxPortToggleList.Toggle.CHECKED
 self.viewerPlot.fire()

 def MakeFoilPlane(self, data, plane_material,guide_plane=None,width=numpy.infty):
 if guide_plane is None:
 guide_plane = numpy.full(data.shape[:2],data.shape[2]/2)
 width = max(width,1)
 foil_plane = numpy.full(data.shape[:2],numpy.nan)
 I=[]
 J=[]
 V=[]
 for x in range(data.shape[0]):
 for y in range(data.shape[1]):
 line = max(0,int(guide_plane[x,y])-width)
+numpy.where(numpy.in1d(data[x,y,max(0,int(guide_plane[x,y])-width)
:min(data.shape[2],int(guide_plane[x,y])+width)].flatten(),plane_material))[0]
min(data.shape[2],int(guide_plane[x,y])+width)
 if len(line) > 0:
 foil_plane[x,y] = numpy.median(line)
 I.append(x)

 J.append(y)
 V.append(numpy.median(line))

 I = numpy.array(I)
 J = numpy.array(J)
 V = numpy.array(V)
 grid_y, grid_x =
numpy.meshgrid(numpy.arange(foil_plane.shape[1]),numpy.arange(foil_plane.shape[0]))
 edges = numpy.ones(foil_plane.shape)
 edges[1:-1,1:-1] = 0
 edgesi = numpy.where(edges)
 foil_plane[edgesi] = scipy.interpolate.griddata(zip(I,J), V, edgesi, method='nearest')
 bad_points = ~numpy.isfinite(foil_plane)
 foil_plane[bad_points] = scipy.interpolate.griddata(zip(grid_x[~bad_points],
grid_y[~bad_points]), foil_plane[~bad_points], (grid_x[bad_points], grid_y[bad_points]),
method='linear')
 return foil_plane

 def RefinePlane(self, foil_plane,sigma):
 print "sigma is: ", sigma
 smooth_plane = scipy.ndimage.filters.gaussian_filter(foil_plane, sigma=sigma)
 diff_plane = numpy.abs(foil_plane-smooth_plane)
 outliers = diff_plane>2*numpy.median(diff_plane)
 print "diff is: ", numpy.median(diff_plane), "\t(",
100.0*numpy.sum(outliers)/float(foil_plane.shape[0]*foil_plane.shape[1]), "%)"
 edges = numpy.ones(foil_plane.shape)
 edges[1:-1,1:-1] = 0
 edgesi = numpy.where(edges)
 outliers = numpy.logical_or(outliers,edges==1)
 foil_plane2 = foil_plane.copy()
 grid_y, grid_x =
numpy.meshgrid(numpy.arange(foil_plane.shape[1]),numpy.arange(foil_plane.shape[0]))
 foil_plane2[edgesi] = scipy.interpolate.griddata(zip(grid_x[~outliers], grid_y[~outliers]),
foil_plane2[~outliers], edgesi, method='nearest')
 outliers = numpy.logical_and(outliers,edges==0)
 foil_plane2[outliers] = scipy.interpolate.griddata(zip(grid_x[~outliers],
grid_y[~outliers]), foil_plane2[~outliers], (grid_x[outliers], grid_y[outliers]),
method='linear')
 bad_points = ~numpy.isfinite(foil_plane2)
 if numpy.sum(bad_points)>0:
 foil_plane2[bad_points] = scipy.interpolate.griddata(zip(grid_x[~bad_points],
grid_y[~bad_points]), foil_plane2[~bad_points], (grid_x[bad_points], grid_y[bad_points]),
method='nearest')
 return foil_plane2, numpy.median(diff_plane)

 def compute(self):
 if not self.do_it.was_hit:
 return
 print "compute!"
 data = self.data.source().get_array().copy()
 plane_material = numpy.where([self.plane.items[x].checked for x in
range(int(self.ports.data.source().range[1])+1)])[0]

 foil_plane = self.MakeFoilPlane(data, plane_material)
 [foil_plane, diff] = self.RefinePlane(foil_plane,sigma=0.2*numpy.min(foil_plane.shape))
 foil_plane = self.MakeFoilPlane(data, plane_material, foil_plane, width=int(diff))
 [foil_plane, diff] = self.RefinePlane(foil_plane,sigma=3)
 foil_plane = foil_plane.astype(int)

 padded_data = numpy.pad(data,((0,0),(0,0),(data.shape[2],0)),'constant')
 print padded_data.shape, padded_data[1,1,:].shape
 for x in range(data.shape[0]):
 for y in range(data.shape[1]):
 padded_data[x,y,:] = numpy.roll(padded_data[x,y,:],-foil_plane[x,y])
 padded_data = padded_data[:,:,data.shape[2]-numpy.amax(foil_plane):-numpy.amin(foil_plane)]
 plane_height = padded_data.shape[2]-numpy.amax(foil_plane)
 del foil_plane

 DepthProfile = numpy.zeros((numpy.amax(data)+1,padded_data.shape[2]))
 bin_set = list(numpy.arange(-1,numpy.amax(data)+1)+0.5)
 for z in range(padded_data.shape[2]):
 DepthProfile[:,z] = numpy.histogram(padded_data[:,:,z],bins=bin_set)[0]

 source = self.data.source()
 output = source.duplicate()
 [s_base, s_ext] = os.path.splitext(source.name)
 if s_ext == '.am':

 output.name = s_base+".rolled"
 else:
 output.name = source.name+".rolled"
 histogram_filename = "L:\Analysis\%s_histogram.txt" % output.name
 output.set_array(padded_data)
 BB = numpy.array(source.bounding_box)
 print BB
 BB[1,2] = (BB[1,2]-BB[0,2])/(data.shape[2]-1)*(padded_data.shape[2]-1) + BB[0,2]
 print BB
 output.bounding_box = BB
 DepthProfileRange = numpy.linspace(0,BB[1,2]-BB[0,2],num=padded_data.shape[2])
 DepthProfileRange = DepthProfileRange-DepthProfileRange[plane_height]
 hx_project.add(output)
 print 'Pixel size is ', (numpy.array(source.bounding_box[1]) -
numpy.array(source.bounding_box[0]))/numpy.subtract(data.shape,1)

 header = 'Depth\t'
 for i in range(DepthProfile.shape[0]):
 header += 'Material %i\t'%i
 DepthProfile = numpy.vstack((DepthProfileRange,DepthProfile))

numpy.savetxt(histogram_filename,DepthProfile.T,fmt='%1.3f\t'+'%i\t'*(DepthProfile.shape[0]-
1),header=header)
 print 'Saved histogram to ', histogram_filename

 PyScriptObject.compute(self)

S6: FIB-sectioning

Fig. S 17: FIB-sectioning of the Nicolaus Border sample resulted in strong curtaining effects due to strong charging and
heterogeneity (varying sputter rates) of the sample materials.

S7: Why discard the Beta part of the data?

The ptychographic imaging used in PXCT produces both the absorption (Beta) and dispersion (Delta)
parts of the sample material’s refractive index. However, the Beta part of the data was discarded in
this work, as is often the case with hard X-ray PXCT measurements. Figure S18 demonstrates why
this is the case. The four material peaks are clearly much broader in the Beta axis and much better
separated along the Delta axis. Note that while the Delta axis spans a range more than four times that
of the Beta axis in Figure S18, the line running through the peaks is close to vertical and thus
indicates that almost all of the contrast is contained within the Delta channel. This pattern is typical
for hard X-ray PXCT measurements because absorption effects are usually very weak and both Delta
and Beta tend to both scale roughly proportional to the electron density of the material. Exceptions to
this rule can occur when the photon energy is close to a transition resonance (not the case in the
measurements presented in this work) where the observed Beta and Delta values can differ
significantly from the non-resonant values.

Fig. S 18 Bivariate histogram of tomogram voxels for the 10-year PXCT sample. Each pixel in this image indicates the number
of voxels from the tomogram having Beta and Delta values corresponding to the position of the pixel on the plot axes. Summing
all pixels along each row gives the Delta histogram shown in Figure 3 of the main text (green line), while summing along each
column would give a Beta histogram. The four peaks correspond to (from top to bottom) gold, silver, carbon and air.

	S1: Supporting information regarding modern Zwischgold samples
	S2: Supporting information regarding the Mary sample
	S3: Supporting information regarding the Sedrun Nicolaus and Bishop
	S4: Supporting XPS depth profile measurements
	S5: Details of the depth profile analysis
	FoilDepthHistogram.pyscro
	S6: FIB-sectioning
	S7: Why discard the Beta part of the data?

