Supplementary Materials

Exciton-dominant Photoluminescence of MoS₂ by Functionalized Substrate

Eunji Ji,^{1, ‡} Kyungmin Yang,^{2, ‡} June-Chul Shin,² Youngbum Kim,³ Jin-Woo Park,¹ Jeongyong Kim,³ Gwan-Hyoung Lee^{2,4,5,6*}

¹ Department of Material Science and Engineering, Yonsei University, Seoul, 03722, Korea

² Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea

³ Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea

⁴Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826, Korea

⁵ Institute of Engineering Research, Seoul National University, Seoul 08826, Korea

⁶ Institute of Applied Physics, Seoul National University, Seoul 08826, Korea

[‡] These authors contributed equally

*Gwan-Hyoung Lee: gwanlee@snu.ac.kr

Fig. S1 The water contact angle on different treated SiO_2 substrate. (a) the water contact angle on the bare SiO_2 without only treatment was 54.05° . (b) the water contact angle on the plasma-treated SiO_2 with plasma treatment for 1 min was about 0°.

Fig. S2 The topography image of HOPG and **(b)** corresponding surface potential image **(c)** The surface potential distribution graph of figure S2 (b)

Potential between sample and tip = $(\phi_{tip} - \phi_{sample})/e$

Potential between MoS_2 and tip = $(\phi_{tip} - \phi_{MoS2})/e$

 $\phi_{MoS2} = \phi_{tip}$ - e(Potential between MoS₂ and tip)

 $\phi_{HOPG} = \phi_{tip}$ - e(Potential between HOPG and tip)

 $\phi_{MoS2} = \phi_{HOPG} + e(Potential between HOPG and tip) - e(Potential between MoS_2 and tip)$

 $\phi_{HOPG} = 4.65 \text{ eV} \text{ (well known)}$

Potential between HOPG and tip = 0.367 V

 ϕ_{MoS2} on bare SiO₂ = 4.65 eV + 0.367 eV - 0.607 eV = 4.41 eV

 φ_{MoS2} on plasma-treated SiO_2 = 4.65 eV + 0.367 eV + 0.116 eV = ~5.13 eV

Fig. S3 Band diagrams with work function value of MoS₂ on both substrates

Fig. S4 RMS roughness of SiO_2 surface according to each oxygen plasma exposure time for 0 (bare SiO_2), 3, 5 and 10 min, respectively

Fig. S5 PL peak position mapping images of (a) 1L MoS_2 /bare SiO_2 and (b) 1L MoS_2 /Plasma-treated SiO_2 (3 min)

Fig. S6 PL intensity mapping images of (a) 1L MoS_2 /bare SiO₂ and (b) 1L MoS_2 /Plasma-treated SiO₂ (3 min)

Fig. S7 Integrated PL intensity spectra of WSe_2 (Blue circled dots) and $MoSe_2$ (Red circled dots) as a function of oxygen plasma exposure time for different times from 1 to 10 min.

Fig. S8 Rate of reduction of relative PL intensity ratios between A and A⁻ (I_A/I_{A-}) peaks of MoS₂/bare SiO₂ (Black dot) and MoS₂/Plasma-treated SiO₂ (Red dots) as a function of stability time to 21 days in the air

Fig. S9 (a) Output curve of $MoS_2/Bare SiO_2$ (b) Output curve of $MoS_2/Plasma-treated SiO_2$