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SI-1: The Effect of the Size of MXene Supercell on the Binding Energies of S Species
Many previous works employed 4 x4 x1 MXene supercell to study the interactions
between LiPSs/NaPSs and MXenes and obtained reliable and reasonable results'. In order
to verify the reasonability of the 4 x4 x1 supercell, here, we compared the binding energies
(Ev) of NaySg, NaxSs, and NaySs on 4 x4 x1 and 5 x5 x1 MXene supercell, respectively. As
shown in Table S1, E}, of these NaPSs calculated by using 4 x4 x1 supercell is very close
to 5x5 x1 supercell, implying that 4 x4 x1 MXene supercell is large enough to eliminate
the interactions from the periodic images.

Table S1 Binding energies (Ep, €V) of Na,Sg, NasSe, and Na,S4 adsorbed on 4 x4 x1 and 5 x5 x1 Ti,CO»

supercells, respectively

Eh (Nast) Eb (NazSG) Eb (NazS4)
4 x4 x1 1.707 1.561 2.482
5x5x1 1.700 1.570 2.502

SI-2: Confirmation of the Most Favourable Adsorption Configuration of Various
NaPSs over Ti2CO2
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Figure S1. Optimized geometries of possible adsorption configurations of Sg on Ti2CO> (a-b), and

the calculated binding energies (£ in eV) are also given.



Figure S2. Optimized geometries of possible adsorption configurations of Na,Ss on Ti.CO> (a-b),

and the calculated binding energies (£, in eV) are also given.
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6  Figure S3. Optimized geometries of possible adsorption configurations of Na,S¢ on Ti.CO; (a-¢),

7  and the calculated binding energies (Ey in eV) are also given.
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Figure S4. Optimized geometries of possible adsorption configurations of Na>S4 on Ti,CO> (a-d),

and the calculated binding energies (£, in eV) are also given.
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Figure S5. Optimized geometries of possible adsorption configurations of Na,S; on Ti,CO: (a-c),

and the calculated binding energies (£y in eV) are also given.
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Figure S6. Optimized geometries of possible adsorption configurations of Na,S on Ti,CO, (a-c),

and the calculated binding energies (£ in eV) are also given.
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1 SI-3: Interactions between Soluble NaPSs and Organic Electrolyte
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Figure S7. Optimized adsorption configurations and binding energies of Na,Ss, Na>Ss, and Na,S4
on DME (a-c) and DOL (d-f).
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SI-4: Density of states (DOS) of Ss/Na2Sx Adsorbed on Ti2CS2 and Ti2CN2
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7  Figure S8. Total density of states (TDOS) of Ss (a), Na,Ss (b), Na,Ss (¢), Na,Ss (d), Na,S; (e), and
8  NasS (f) adsorbed on TiCS,.
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Figure S9. Total density of states (TDOS) of Ss (a), Na»Sg (b), NaxSe (), Na>S4 (d), Na,S; (e),

and NasS (f) adsorbed on Ti,CNo.
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