

Fig. S1. SEM images of the (a) Ni(OH)₂ nanosheets and (b) NiPS₃ nanasheets.

Fig. S2. AFM image of NiPS₃ nanosheets.

Fig. S3. Image of the bulk NiPS₃ synthesized by traditional method. Stoichiometric ratios of Ni, P and S were placed in vacuum ampoules and heated in a dual temperature zone (650° - 700°) tube furnace for five days.

Fig. S4. SEM images of the (a) NiPS₃/CNFs and (b) NCNFs.

Fig. S5. SEM images of the a) Ni(OH)₂@NCNFs; b) NiPS₃@NCNFs-1 (0.5mmol NiSO₄·6H₂O) , c) NiPS₃@NCNFs-2 (1mmol NiSO₄·6H₂O) and d) NiPS₃@NCNFs-3 (1.5mmol NiSO₄·6H₂O). The content of NiPS₃ nanosheets were controlled by the concentration of nickel ions.

Fig. S6. Raman spectrum of NiPS₃@NCNFs, the Raman light wave number is 532nm.

Fig. S7.FT-IR spectrum of NiPS₃@NCNFs.

Fig. S8. (a) The NiPS₃@NCNFs after being folded in half for 300 times, (b) the cracked NiPS₃/CNFs after several folds.

Fig. S9. The stress-strain curves of NiPS₃/NCNFs, NCNFs and CNFs.

Fig. S10. XRD patterns of NiPS₃@CNFs and NiPS₃/NCNFs.

Fig. S11. Cycling performance of the NCNFs electrode at 0.1A g^{-1} .

Fig. S12. CV curves of the NiPS₃@NCNFs between 0.01 -3 V at a scan rate 0.1 mV/s.

Fig. S13. Galvanostatic charge-discharge curves of the NiPS₃@NCNFs.

Fig. S14. Cycling performance of bulk $NiPS_3$ electrode at 1A g⁻¹.

Fig. S15. SEM images of the NiPS₃/NCNFs after 1000 times charge-discharge.

Fig. S16. Rate performances of the NiPS₃@NCNFs.

Fig. S17. SEM images of the NiPS₃@NCNFs after 3 times charge-discharge.

Fig. S18. The plot of real part of the impedance (Z') against the inverse square root of the angular momentum.

Table.S1. The compositions of the samples were determined by ICP. 1 mg sample was first dissolved in hot concentrated nitric acid, and the solution was diluted to 100 mL. A standard solution with Ni^{2+} concentration of 0.5, 1, 1.5, 2, and 2.5 ppm were prepared to get the standard curve.

Samples	Nickel ion Nickel ion content		NiPS ₃ content (wt%)
	concentration	(per mg in electrode)	
NiPS ₃ @NCNFs-1	0.806mg/L	0.0806mg	25.52%
NiPS ₃ @NCNFs-2	1.088mg/L	0.1088mg	34.45%
NiPS ₃ @NCNFs-3	2.147mg/L	0.2147mg	67.99%
NiPS ₃ /CNFs	1.654mg/L	0.1654mg	52.37%
NiPS ₃ /NCNFs	1.248mg/L	0.1248mg	39.52%

Material	Morphology	Flexibility	Specific capacity (mAh g ⁻¹) /Current	Retention capacity (mAh g ⁻¹)/ Cycling number
			density (A g ⁻	/Current density (A g ⁻¹)
NiPS ₃ /NCNFs	NiPS ₃ nanosheets	Folded 300 times	2156.2/0.1	893.5/1000/1
(This work)	embedded in	without creases		
	NCNF			
SnO ₂ /CNF ¹	SnO ₂ nanoparticle	Demonstrate	1293/0.1	754/300/1
	embedded in CNF	flexible by image		
Porous CNF ²	Carbon nanofibers	Could be bent	405/0.03	380/200/0.03
		without breaking		
MoS_2/CNF^3	MoS_2 nanosheets	Could be bent	1200/0.1	670/200/0.5
	on CNF	without breaking		
NiS/CNF ⁴	NiS nanoparticles	Demonstrate	1769/0.1	1021/100/0.1
	on CNF	flexibility by images		
$SC-NF^5$	core-shell Si/C	Demonstrate	1638/0.1	720/200/0.5
	nanofiber	flexibility by images		
SnS/C ⁶	SnS nanoparticles	Demonstrate	1278/0.1	330/1000/0.8
	on CNF	flexibility by images		
FeP@C ⁷	FeP nanotubes on	Could be bent	1350/0.1	500/1100/1.5
	CNF	without breaking		
MnOQD/CNT8	MnO quantum	Demonstrate	1361/0.1	883/1000/1
	dots on CNT	flexibility by images		
SHCM/NCF ⁹	Si nanodots	Bent 180° without	2583/0.1	1442/800/1
	dispersed in	breaking		
	carbon			
NiCoPS ₃ /NC ¹⁰	Cubic-like	Brittle	1312/0.1	831/1200/2
	structure			

Table.S2. Comparison of NiPS₃/NCNFs with other reported freestanding carbonbased electrodes.

References

- 1. L. Xia, S. Wang, G. Liu, L. Ding, D. Li, H. Wang and S. Qiao, Small, 2016, 12, 853-859.
- 2. L. Tao, Y. Huang, Y. Zheng, X. Yang, C. Liu, M. Di, S. Larpkiattaworn, M. R. Nimlos and Z. Zheng, J. Taiwan Inst. Chem. E., 2019, 95, 217-226.
- 3. J. Wang, R. Zhou, D. Jin, K. Xie and B. Wei, *Electrochim. Acta*, 2017, 231, 396-402.
- L. Zhang, Y. Huang, Y. Zhang, H. Gu, W. Fan and T. Liu, *Advanced Materials Interfaces*, 2016, 3, 1500467.
- 5. W. Li, J. Peng, H. Li, Z. Wu, Y. Huang, B. Chang, X. Guo, G. Chen and X. Wang, ACS Applied Energy Materials, 2021, 4, 8529-8537.

- J. Xia, L. Liu, S. Jamil, J. Xie, H. Yan, Y. Yuan, Y. Zhang, S. Nie, J. Pan, X. Wang and G. Cao, Energy Storage Materials, 2019, 17, 1-11.
- X. J. Xu, J. Liu, Z. B. Liu, Z. S. Wang, R. Z. Hu, J. W. Liu, L. Z. Ouyang and M. Zhu, Small, 2018, 14, e1800793.
- 8. S. Huang, L. Yang, M. Gao, Q. Zhang, G. Xu, X. Liu, J. Cao and X. Wei, *Electrochim. Acta*, 2019, **319**, 302-311.
- 9. R. Zhu, Z. Wang, X. Hu, X. Liu and H. Wang, Adv. Funct. Mater., 2021, 31, 2101487.
- Q. Gui, Y. Feng, B. Chen, F. Gu, L. Chen, S. Meng, M. Xu, M. Xia, C. Zhang and J. Yang, *Adv. Energy Mater.*, 2021, 11, 2003553.