Electronic Supplementary Information

Determination of products

Determination of NO₃⁻-N:¹

The collected electrolyte was diluted several times to the detection range. 100 μ L of 1 M HCl solution and 10 μ L of 0.8 wt% sulfamic acid solution were added to 5 mL of diluted electrolyte and mixed for 10 min. Then, the absorption spectrum of the mixed solution was recorded using ultraviolet-visible (UV-vis) spectrophotometry in the wavelength range of 300-200 nm. The absorbance value was corrected by the following equation: A=A_{220nm}-2A_{275nm}. A series of KNO₃ standard solutions were prepared to obtain the calibration curve.

Determination of NO₂⁻-N:¹

To determine the concentration of NO₂⁻-N, the color reagent was first obtained through a mixed solution containing p-aminobenzenesulfonamide (0.4 g), N-(1-Naphthyl) ethylenediamine dihydrochloride (0.02 g), phosphoric acid (1 mL, ρ =1.70 g/mL) and deionized water (5 mL). Then, the color reagent (100 µL) and the diluted electrolyte (5 mL) were mixed for 20 min. Finally, the absorption spectrum of the mixed solution was recorded using UV-vis spectrophotometry in the wavelength range of 650-450 nm. A series of NaNO₂ standard solutions were prepared to obtain the calibration curve.

Determination of NH₃-N:¹

Nessler's reagent was used to determine the ammonia concentration. First, to prepare Nessler's reagent, KI (17.5 g) and Hg₂I (25.0 g) were dissolved in 4.0 M KOH solution (250 mL) and stored in the dark for 24 h. Then, potassium sodium tartrate solution (0.1 mL, ρ =500 g/L) and Nessler's reagent (0.1 mL) were added to diluted electrolyte (5 mL). Finally, the absorption spectrum of NH₃-

N was recorded using UV-vis spectrophotometry in the wavelength range of 530-380 nm. The calibration curve was obtained by using a series of standard NH₄Cl solutions.

Isotope Labeling Experiments

 $K^{15}NO_3$ (99%) was used as the feeding nitrogen source to perform the isotopic labeling experiments to clarify the source and quantify the concentration of ammonia-N. After electroreduction for 2 h in 0.5 M K₂SO₄ solution containing 50 mg L⁻¹ K¹⁵NO₃-¹⁵N. The post-electrolysis electrolyte was collected and the pH value was adjusted to weak acid by 4 M H₂SO₄. The ¹⁵NH₄+-¹⁵N concentration was quantified by ¹H NMR with external standard of maleic acid (C₄H₄O₄). First, various amounts of ¹⁵NH₄+-¹⁵N (10, 20, 30, 40, 50 mg L⁻¹) were dissolved in 0.5 M K₂SO₄ with 50 mg L⁻¹ C₄H₄O₄ as a standard solution. Then, 50 µL of deuterium oxide (D₂O) was mixed with 0.5 mL of the acidified electrolyte or standard solution to obtain further ¹H NMR spectra by the NMR detection.

Calculation of the conversion rate, yield, selectivity, and Faradaic efficiency

The calculation equation is as follows:

$$Conversion = \Delta c_{NO:} / c_0 \times 100\%$$
(1)

$$\text{Yield}_{\text{NH}_{2}} = (c_{\text{NH}_{2}} \times V) / (M_{\text{NH}_{2}} \times t \times m)$$
(2)

Selectivity (NH₃) =
$$c_{\rm NH_3} / \Delta c_{\rm NO_2} \times 100\%$$
 (3)

Selectivity
$$(NO_2^-) = c_{NO_2^-} / \Delta c_{NO_3^-} \times 100\%$$
 (4)

Faradaic efficiency =
$$(8F \times c_{NH_3} \times V) / (M_{NH_3} \times Q)$$
 (5)

Where Δc_{NO3^-} is the concentration difference of NO₃⁻ before and after reduction, c_0 is the initial concentration of NO₃⁻, c_{NH3} is the measured NH₃ concentration, V is the electrolyte volume in the cathode chamber (35 mL), *t* is the electrolysis time (2 h), M_{NH3} is the molar mass of NH₃, *m* is the catalyst mass (1 mg), c_{NO2^-} is the concentration of NO₂⁻, *F* is the Faraday constant (96 485 C mol⁻¹), and *Q* is the total charge during electrolysis.

Fig. S1 SEM (a), and TEM (b) images of the Cu nanowires.

Fig. S2 XRD pattern (a), and high-resolution XPS spectrum of Cu 2p (b) for Cu nanowires.

Fig. S3 (a) XPS spectra of the CuO nanotubes. (b) High-resolution XPS spectra of O 1s for CuO nanotubes.

Fig. S4 Cu LMM AES spectra of CuO nanotubes and Cu nanotubes.

Fig. S5 (a) UV-vis absorption spectroscopy for various concentrations of NO_3 -N. (b) The concentration-absorbance calibration curve of NO_3 -N.

Fig. S6 (a) UV-vis absorption spectroscopy for various concentrations of $NO_2^{-}N$. (b) The concentration-absorbance calibration curve of $NO_2^{-}N$.

Fig. S7 (a) UV-vis absorption spectroscopy for various concentrations of NH_3 -N. (b) The concentration-absorbance calibration curve of NH_3 -N.

Fig. S8 Chronoamperometric measurements of Cu nanotubes at various potentials in $0.5 \text{ M K}_2\text{SO}_4$ solution containing 50 ppm NO₃⁻-N.

Fig. S9 (a) LSV curves for Cu nanotubes with different concentration of nitrate. (b) The comparisons of NO_3 --N conversion rate and NH_3 -N selectivity for Cu nanotubes at different nitrate concentrations.

Fig. S10 LSV curves of Cu nanotubes and Cu nanowires.

Fig. S11 (a) The comparisons of NO_3^- -N conversion rate, NO_2^- -N selectivity, and NH_3 -N selectivity between Cu nanotubes and Cu nanowires. (b) NH_3 yield rate and Faradaic efficiency of Cu nanotubes and Cu nanowires at -1.3 V *vs*. SCE for 2 h.

Fig. S12 Nyquist plots for Cu nanotubes and Cu nanowires recorded at -1.2 V (*vs.* SCE) in 0.5 M K₂SO₄ solution. The frequency ranges from 100 kHz to 0.1 Hz.

Fig. S13 Cyclic voltammograms for (a) Cu nanotubes and (c) Cu nanowires recorded with various scan rates in 0.5 M K_2SO_4 solution. Capacitive current densities at -0.37 V (*vs.* SCE) derived from CVs against scan rates for (b) Cu nanotubes, and (d) Cu nanowires.

Fig. S14 (a) SEM image for Cu nanoparticles. (b) LSV curves of Cu nanotubes and Cu nanoparticles. (c) The comparisons of NO₃⁻-N conversion rate, NO₂⁻-N selectivity, and NH₃-N selectivity between Cu nanotubes and Cu nanoparticles. (d) NH₃ yield rate and Faradaic efficiency of Cu nanotubes and Cu nanoparticles at -1.3 V *vs.* SCE for 2 h. (e) Cyclic voltammograms recorded with various scan rates in 0.5 M K₂SO₄ solution, and (f) capacitive current densities at -0.37 V (*vs.* SCE) derived from CVs against scan rates for Cu nanoparticles.

Fig. S15 Selectivity of NH_3 -N and NO_2^{-} -N for Cu nanotubes after continuous cycling test at -1.3 V *vs.* SCE.

Fig. S16 TEM image of Cu nanotube after stability test.

Fig. S17 (a) NH₃ yield rates of the Cu nanotubes and carbon paper at -1.3 V. (b) NH₃ yield rates of the Cu nanotubes in 0.5 M K_2SO_4 solution with and without 50 mg L⁻¹ NO₃⁻-N.

Fig. S18 (a) The ¹H NMR spectra of ¹⁵NH₄⁺ with different ¹⁵NH₄⁺⁻¹⁵N concentration. (b) The standard curve of integral area ($^{15}NH_4^{+-15}N / C_4H_4O_4$) against ¹⁵NH₄⁺⁻¹⁵N concentration.

Catalysts	Electrolyte	Potential	NH ₃ yield	FE	NH3-N selectivity	Ref.
Cu nanotubes	0.5 M K ₂ SO ₄ + 50 ppm NO ₃ ⁻ -N	-1.3 V vs. SCE	778.6 μg h ⁻¹ mg ⁻¹	85.7%	86.2%	This work
Cu nanosheets	0.1 M KOH + 10 mM KNO ₃	-0.15 V vs. RHE	390.1 μg h ⁻¹ mg _{cat.} ⁻¹	99.7%		2
Cu@Cu ₂₊₁ O NWs	0.5 M K ₂ SO ₄ + 50 ppm NO ₃ ⁻ -N	-1.2 V vs. SCE	576.53 $\mu g h^{-1} m g_{cat.}^{-1}$	87.07%	76%	3
Cu-PTCDA	0.1 M PBS + 500 ppm KNO ₃	-0.4 V vs. RHE	$\begin{array}{c} 436 \pm 85 \ \mu g \\ h^{-1} \ cm^{-2} \end{array}$	85.9%		4
Ir nanotubes	0.1 M HClO ₄ + 1 M NaNO ₃	0.06 V vs. RHE	921 μg h ⁻¹ mg _{cat} ⁻¹	84.7%		5
Cu/GO/Ti	0.05 M Na ₂ SO ₄ + 50 mg/L NO ₃ ⁻ -N	At the current of 0.05 A			50.37%	6
Cu/rGO/graphite plate	0.02 M NaCl + 0.02 M NaNO ₃	-1.4 V vs. SCE			29.93%	7
Cu/Ni composite electrodes	0.1 M Na ₂ SO ₄ + 50 ppm NO ₃ ⁻ -N	At a constant current of 3 mA cm ⁻²			83.2%	8
Ag ₂₇ Ni ₇₃	1 M NaOH + 20 mM NaNO ₃	-1.3 V vs. SCE			77.8%	9

Table S1. Comparisons of the NO_3RR performance for Cu nanotubes with recently reported catalysts.

References

- 1. Y. Wang, W. Zhou, R. Jia, Y. Yu and B. Zhang, Angew. Chem. Int. Ed., 2020, 59, 5350-5354.
- X. Fu, X. Zhao, X. Hu, K. He, Y. Yu, T. Li, Q. Tu, X. Qian, Q. Yue, M. R. Wasielewski and Y. Kang, *Appl. Mater. Today*, 2020, 19, 100620.
- T. Ren, K. Ren, M. Wang, M. Liu, Z. Wang, H. Wang, X. Li, L. Wang and Y. Xu, *Chem. Eng. J.*, 2021, 426, 130759.
- G.-F. Chen, Y. Yuan, H. Jiang, S.-Y. Ren, L.-X. Ding, L. Ma, T. Wu, J. Lu and H. Wang, *Nat. Energy*, 2020, 5, 605-613.
- J. Y. Zhu, Q. Xue, Y. Y. Xue, Y. Ding, F. M. Li, P. Jin, P. Chen and Y. Chen, ACS Appl. Mater. Interfaces, 2020, 12, 14064-14070.
- 6. J. Wang, S. Wang, Z. Zhang and C. Wang, J. Environ. Manage., 2020, 276, 111357.
- D. Yin, Y. Liu, P. Song, P. Chen, X. Liu, L. Cai and L. Zhang, *Electrochim. Acta*, 2019, 324, 134846.
- 8. Y.-J. Shih, Z.-L. Wu, Y.-H. Huang and C.-P. Huang, Chem. Eng. J., 2020, 383, 123157.
- L. Mattarozzi, S. Cattarin, N. Comisso, N. El Habra, P. Guerriero, M. Musiani and L. Vázquez-Gómez, *Electrochim. Acta*, 2020, **346**, 136240.