Supplemental Material

One-dimensional metal thiophosphate nanowires by cluster assembling

Chanjuan Shang, Yanyan Zhao, Yan Su, Si Zhou*, Jijun Zhao

Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China

^{*}Corresponding author, E-mail: <u>sizhou@dlut.edu.cn</u> (Si Zhou)

Contents:

Table S1 Band gap (in the unit of eV) of 1D, 2D and bulk MPS₄ calculated by different methods, including the PBE functional, PBE+U method (U = 3.0 eV), and HSE06 hybrid functional. For ferromagnets, the band gap of spin-up and spin-down channels are given.

Table S2 Formation energies (E_{form}) of 1D MPS₄ (M = transitional metals) nanowires. Fig. S1 Band structures of MPS₄ (M = Co, Fe and Cr) nanowires by PBE+U with U = 3.0 eV, U = 5.0 eV and U = 7.0 eV.

Fig. S2 Phonon dispersions of MPS_4 (M = Al, Ga, In, V, Co, Ni, Mo, Ru, Pd, and Re) nanowires.

Fig. S3 Energy profile during AIMD simulation for MPS_4 (M = Al, V, Ni and Pd) nanowires at 300 K. The energy is referred to that of the equilibrium structure of MPS_4 nanowire at 0 K.

Fig. S4 Band structures of MPS₄ nanowires for (a) M = transition metal elements, calculated by the PBE+U (U = 3.0 eV) method, and (b) M = group-IIIA elements (B, Al, Ga, In), calculated by the HSE06 functional. The symbol "II" indicate the type-II structure for the nanowire.

Fig. S5 The lowest-energy collinear magnetic order and non-collinear magnetic configurations of selected MPS₄ nanowires. MPS₄ (M = Mn, Fe, and Co) nanowires are found to have non-collinear magnetic order, with higher energy by $1.6 \sim 4.8$ meV per magnetic atom than those of the collinear ones.

Fig. S6 Band structures of PdPS₄ nanowire calculated by different methods, (a) PBE+U with U = 3.0 eV, (b) U = 5.0 eV, (c) U = 7.0 eV, (d) by considering SOC with different densities of **k**-points with 0.0002 Å⁻¹, and (f) ~ (i) by considering different SOC strength (200% ~ 500%) and denser **k**-points with 0.0001 Å⁻¹. The semimetal behavior is robust under different computational methods.

Fig. S7 Band structures of bulk MPS_4 (M = Al, Ga, In) calculated by the HSE06 functional.

Fig. S8 Band structures of 2D MPS₄ (M = V, Co, Ni, Mo, Ru, Pd, Re) monolayer calculated by the PBE+ U(U=3.0 eV) method.

Table S1 Band gap (in the unit of eV) of 1D, 2D and bulk MPS₄ calculated by different methods, including the PBE functional, PBE+U method (U = 3.0 eV), and HSE06 hybrid functional. For ferromagnets, the band gap of spin-up and spin-down channels are given.

	1D				bulk			
	PE	BE	HSI	E06]	PBE	HS	E06
BPS_4	2.3	37	3.5	57		1.97	3.	21
AlPS ₄	2.93		4.14		2.39		3.55	
GaPS ₄	2.78		4.01		2.02		3.17	
InPS ₄	2.53		3.73		1.99		3.12	
	1D				2D			
	PE	BE	PBE	E+U]	PBE	PBI	E+U
VPS_4	0.7	77	0.6	50		0.01	0.	03
CrPS ₄	0.9	97	1.1	15	1.0	0/1.41	0.66	/1.69
CoPS ₄	0.7	76	0.8	81		0.87	0.	71
NiPS ₄	1.73/0.01		1.73/0.22					
MoPS ₄	-	-	-	-			-	-
RuPS ₄					0.33		0.37	
PdPS ₄	0		0					
RePS ₄	0.02/metal 1.41/meta		metal					
1D	ScPS ₄	TiPS ₄	MnPS ₄	FePS ₄	YPS ₄	ZrPS ₄	NbPS ₄	RhPS ₄
PBE	2.07		1.25	0.66	2.32		0.91	0.64
PBE+U	2.28		1.56	1.65	0.37		1.01	0.83
	HfPS ₄	TaPS ₄	WPS ₄	OsPS ₄	IrPS ₄	PtPS ₄		
PBE		1.77			0.72	0		
PBE+U		1.73			0.94	0		

3 <i>d</i>	$E_{\rm form} ({\rm eV})$	4 <i>d</i>	$E_{\rm form}({\rm eV})$	5 <i>d</i>	$E_{\rm form} ({\rm eV})$
ScPS ₄	-3.77	YPS ₄	-3.89		
TiPS ₄	-2.19	ZrPS ₄	-2.43	HfPS_4	-2.45
VPS ₄	-1.21	NbPS ₄	-1.59	TaPS ₄	-1.46
CrPS ₄	-1.44	$MoPS_4$	0.13	WPS_4	0.63
$MnPS_4$	-1.15			RePS ₄	1.06
FePS ₄	-3.04	RuPS ₄	0.69	OsPS ₄	1.28
CoPS ₄	-0.16	RhPS ₄	0.25	IrPS ₄	0.69
NiPS ₄	-0.08	PdPS ₄	0.06	PtPS ₄	-0.10

Table S2 Formation energies (E_{form}) of 1D MPS₄ (M = transitional metals) nanowires.

Fig. S1 Band structures of MPS₄ (M = Co, Fe and Cr) nanowires by PBE+U with U = 3.0 eV, U = 5.0 eV and U = 7.0 eV.

Fig. S2 Band structures of MPS_4 (M = Al, Ga, In, V, Co, Ni, Mo, Ru, Pd, and Re) nanowires.

Fig. S3 Energy profile during AIMD simulation for MPS₄ (M = Al, V, Ni and Pd) nanowires at 300 K. The energy is referred to that of the equilibrium structure of MPS₄ nanowire at 0 K.

Fig. S4 Band structures of MPS₄ nanowires for (a) M = transition metal elements, calculated by the PBE+U (U = 3.0 eV) method, and (b) M = group-IIIA elements (B, Al, Ga, In), calculated by the HSE06 functional. The symbol "II" indicate the type-II structure for the nanowire.

	x y ∟z collinear	non-collinear	E (meV)
MnPS ₄	↓ ••\$\$\$>• ↓ ••\$\$\$\$>••	****	4.8
FePS ₄	+{X}-+-{X}	****	2.0
CoPS ₄	***	**************************************	1.6

Fig. S5 The lowest-energy collinear magnetic order and non-collinear magnetic configurations of selected MPS₄ nanowires. MPS₄ (M = Mn, Fe, and Co) nanowires are found to have non-collinear magnetic order, with higher energy by $1.6 \sim 4.8$ meV per magnetic atom than those of the collinear ones.

Fig. S6 Band structures of PdPS₄ nanowire calculated by different methods, (a) PBE+U with U = 3.0 eV, (b) U = 5.0 eV, (c) U = 7.0 eV, (d) by considering SOC with different densities of **k**-points with 0.0002 Å⁻¹, and (f) ~ (i) by considering different SOC strength (200% ~ 500%) and denser **k**-points with 0.0001 Å⁻¹. The semimetal behavior is robust under different computational methods.

Fig. S7 Band structures of bulk MPS_4 (M = Al, Ga, In) calculated by the HSE06 functional.

Fig. S8 Band structures of 2D MPS₄ (M = V, Co, Ni, Mo, Ru, Pd, Re) monolayer calculated by the PBE+ U(U=3.0 eV) method.