Supplementary information

Identifying the effects of oxygen on the magnetism of $\mathbf{W S}_{\mathbf{2}}$ nanosheets

Yuanyuan Sun, $*^{a}$ Hongjun Zhang, ${ }^{a}$ Kaiyu Zhang, ${ }^{b}$ Hongzhe Pan, ${ }^{a}$ Yongping Zheng, ${ }^{c}$ Qian Feng, ${ }^{c}$ and Nujiang Tang ${ }^{\text {d }}$
a School of Physics and Electronic Engineering, Linyi University, Linyi 276000, China. E-mail: sunyuanyuan@lyu.edu.cn.
${ }^{\text {b }}$ Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
${ }^{\text {c }}$ College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fujian Normal University, Fuzhou 350117, China.
d National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, China.

Corresponding Author

*E-mail: sunyuanyuan@lyu.edu.cn

Fig. S1. (a) SEM-EDXS spectrum recorded on the exfoliated WS_{2} nanosheets. (b) SEM-EDXS spectrum recorded on the sulfurized WS_{2} nanosheets.

Fig. S2. (a) HRTEM image of the exfoliated WS_{2} nanosheets and the corresponding FFT (inset). (b)
the IFFT calculated from the FFT spots in the inset of panel (a). (c) HRTEM image of the sulfurized WS_{2} nanosheets and the corresponding FFT (inset). (d) IFFT calculated from the FFT spots in the inset of panel (c).

Fig. S3. The Raman spectra of the exfoliated and sulfurized WS_{2} nanosheets.

Fig. S4. (a) The typical fine-scanned S $2 p$ spectrum of the exfoliated WS_{2} nanosheets. The subpeaks of $1 \mathrm{~T}-\mathrm{S}^{2-}$ and $2 \mathrm{H}-\mathrm{S}^{2-}$ are denoted by red and blue lines, respectively. (b) The typical finescanned $S 2 p$ spectrum of the sulfurized W_{2} nanosheets.

Fig. S5. (a) The XPS survey spectrum of the annealed W_{2} nanosheets. (b) The typical fine-scanned W 4 f and 5 p spectrum of the annealed WS2 nanosheets. The sub-peaks of $1 \mathrm{~T}-\mathrm{W}^{4+}, 2 \mathrm{H}-\mathrm{W}^{4+}$ and W^{6+} are denoted by red, blue and magenta lines, respectively. (c) The typical fine-scanned S 2 p spectrum of the annealed WS_{2} nanosheets. The sub-peaks of $1 \mathrm{~T}-\mathrm{S}^{2-}$ and $2 \mathrm{H}-\mathrm{S}^{2-}$ are denoted by red and blue lines, respectively.

Fig. S6. The magnetic properties of the annealed WS_{2} nanosheets. (a) ZFC and FC curves measured from 2 to 300 K under the applied field of 1 kOe . (b) $1 / \chi-T$ curve measured from 2 to 50 K . The black symbols are the measurements and the red line is fitted by the Curie law. (c) The $M-H$ curve measured at 300 K . (d) The $\mathrm{M}-\mathrm{H}$ curve measured at 2 K . The black symbols are the measurements and the red line is fitted by the Brillouin function.

Fig. S7. (a) The structure and (b) the spin-polarized total DOS of WS_{2} nanosheets with one sulfur atom substituded by oxygen. (c) The structure and (d) the spin-polarized total DOS of WS_{2} nanosheets with two sulfur atoms substituded by oxygen. (e) The structure and (f) the spinpolarized total DOS of WS_{2} nanosheets with three sulfur atoms substituded by oxygen.
(a)
(b)

(c)

(d)

(e)

Fig. S8. (a) The structure and (b) the spin-polarized total DOS of WS_{2} nanosheets with four sulfur atoms substituded by oxygen. (c) The structure and (d) the spin-polarized total DOS of WS 2 nanosheets with five sulfur atoms substituded by oxygen. (e) The structure and (f) the spinpolarized total DOS of WS_{2} nanosheets with six sulfur atoms substituded by oxygen.

Fig. S9. (a) the net spin density distribution and (b) the spin-polarized DOS of WS_{2}-ZNRs with one S atom at the edge substitued by oxygen (WS_{2}-ZNRs-1Os). (c) the net spin density distribution and (d) the spin-polarized DOS of WS_{2}-ZNRs with two S atoms at the edge substitued by oxygen (WS W_{2}-ZNRs-2Os). (e) the net spin density distribution and (f) the spin-polarized DOS of WS_{2}-ZNRs with the edge W atoms bonding with oxygen $\left(\mathrm{WS}_{2}-\mathrm{ZNRs}-1 \mathrm{O}_{\mathrm{ad}-\mathrm{w}}\right)$. The unit cells are depicted by the blue lines.

Table S1 The magnetic moments (μ_{B}) of the unit cells for the single-layer WS_{2} with sulfur atoms substituted by oxygen.

sample	10_{s}	$2 \mathrm{O}_{s}$	30_{s}	40_{s}	50_{s}	60_{s}
$\mathrm{M}\left(\mu_{B}\right)$	0.001	0	0.003	0.003	0.003	0

