Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2022

Supporting Information

to

Fabrication of Diverse Multi-compartment Micelles by Re-dispersion of Triblock

Terpolymer Bulk Morphologies

Giada Quintieri^{a,b}, Daniel Schlattmann^a, Monika Schönhoff^{a,b}, André H. Gröschel^{a,b,*}

^a Physical Chemistry, University of Münster, Corrensstr. 28-30, 48149 Münster

^bCenter for Soft Nanoscience (SoN), University of Münster, Busso-Peus- Str. 10, 48149 Münster

Table of Contents

1.	Specifics of the SBT triblock terpolymers	2
2.	NMR analysis of Ace/IPA compositions	3
3.	DLS analysis of SBT MCMs	4
4.	Bulk morphologies exemplified on $S_{507}B_{537}T_{358}$ and $S_{307}B_{525}T_{76}$ of Figure 1 (main text)	5
5.	Ellipsoidal polymersomes with PB cylinder morphology	5
6.	Spheres-on-sphere MCMs	6
7.	Helix-on cylinder morphology	7
8.	Bilayer discs and polymersomes with PB spheres in the PS membrane	8
9.	Polymersomes with bicontinous membrane	9
10.	Polymersomes with lamellar membrane (core-shell)	9
11.	Supporting images to Figure 5 (Main Text)	10

1. Specifics of the SBT triblock terpolymers

Code	Composition ^a	N s ^b	N _B b	NTp	SBBc	Ø₿°	\mathbf{M}_{n}^{d}
S ₃₀₀ B ₇₅₄ T ₅₇	S ₃₉ B ₅₁ T ₁₀	300	754	57	0.21	0.16	80
S ₃₀₅ B ₅₂₃ T ₆₄	S ₄₆ B ₄₁ T ₁₃	305	523	64	0.24	0.12	69
S ₃₁₀ B ₃₈₃ T ₅₇	S ₅₃ B ₃₄ T ₁₃	310	383	57	0.22	0.08	61
S ₃₀₇ B ₅₂₅ T ₇₆	S45B40T15	307	525	76	0.28	0.11	71
S ₅₃₉ B ₁₇₃ T ₈₉	S ₇₂ B ₁₂ T ₁₆	539	173	89	0.25	0.02	78
S ₃₀₁ B ₇₅₆ T ₁₀₅	S ₃₆ B ₄₇ T ₁₇	301	756	105	0.39	0.16	87
S ₃₀₇ B ₃₇₉ T ₈₂	S ₅₀ B ₃₂ T ₁₈	307	379	82	0.31	0.09	64
S ₅₀₉ B ₅₃₈ T ₁₅₆	$S_{51}B_{28}T_{21}$	509	538	156	0.43	0.07	104
S ₅₃₉ B ₁₇₃ T ₁₃₉	$S_{66}B_{11}T_{23}$	539	173	139	0.38	0.02	85
S ₂₉₈ B ₇₄₇ T ₁₆₁	$S_{33}B_{43}T_{24}$	298	747	161	0.60	0.16	94
S ₅₀₇ B ₅₃₇ T ₃₅₈	S ₄₀ B ₂₂ T ₃₈	507	537	358	0.99	0.07	132
S ₅₁₁ B ₅₄₄ T ₄₀₉	S ₃₈ B ₂₁ T ₄₁	511	544	409	1.12	0.07	140
S ₅₁₂ B ₅₄₇ T ₄₆₄	S ₃₆ B ₂₀ T ₄₄	512	547	464	1.27	0.07	148

Table S1 Specification for the SBT triblock terpolymers employed.

^a Subscripts denote the degree of polymerization, N of the respective blocks. ^b Subscripts denote the weight fraction of each block. ^c Calculation based on q = 7.4 in 90 v% acetone. ^d Molecular weight in kg/mol.

2. NMR analysis of Ace/IPA compositions

Figure S1. Variation of Ace:IPA composition according to ¹H-NMR measurements of several SBT triblock terpolymers.

	Aceton IPA
	e ↓ ↓
10:90 → 9.2:90.8	
	[1.00] [9.95]
20:80 → 19.5:80.5	, M
	[1.00] [4.17]
30:70 → 28.8:71.2	A M
	[1.00] [2.47]
1 0:60 → 4 0.3:59.7	. <u> </u>
	[1.0g] (1.48)
50:50 → 46.5:53.5	
	(1.00) (1.15)
i0:40 → 56.2:43.8	
	(1.00) (0.79)
70:30 → 67.5:32.5	Δ
	[1.00] [0.48]
30:20 → 79.5:20.5	
	[1.0g] [0.26]
90:10 → 89:11	
	[1.0ġ] [0.13]
7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5	3.0 2.5 2.0 1.5 1.0 0.5 0.0

Figure S2. ¹H-NMR measurements for tracking changes in solvent composition after thermal annealing.

3. DLS analysis of SBT MCMs

Figure S3. DLS measurements before and after temperature annealing for selected SBTs a, b) S₅₀₇B₅₃₇T₃₅₈, c, d) S₃₀₇B₅₂₅T₇₆, and e, f) S₅₁₂B₅₄₇T₄₆₄.

4. Bulk morphologies exemplified on S₅₀₇B₅₃₇T₃₅₈ and S₃₀₇B₅₂₅T₇₆ of Figure 1 (main text)

Figure S4. TEM of bulk morphologies of a) S₅₀₇B₅₃₇T₃₅₈ (lamella-lamella) and **b)** S₃₀₇B₅₂₅T₇₆ (core-shell gyroid) Samples were stained with OsO4; PB appears black, PS as dark grey and PT is brightest.

5. Ellipsoidal polymersomes with PB cylinder morphology

Figure S5. TEM images of $S_{307}B_{525}T_{76}$ in Ace:IPA 80:20 (v/v). a) Overview image showing ellipsoidal polymersomes, b) a deflated polymersome with creases, and c) close-up of the polymersome tip with the PB cylinder morphology. Samples were stained with OsO₄; PB appears dark, PS grey and PT is not visible.

Figure S6. TEM overview image of $S_{512}B_{547}T_{464}$ in Ace:IPA 90:10 (v/v). Sample stained with OsO₄; PB appears dark, PS grey and PT is not visible.

7. Helix-on cylinder morphology

Figure S7. TEM overview images and close-ups of the helix-on-cylinder morphology. Samples were stained with OsO₄; PB appears dark, PS bright and PT is not visible.

8. Bilayer discs and polymersomes with PB spheres in the PS membrane

Figure S8. Supporting TEM images of a, b) spheres-on-bilayer discs and **c, d)** spheres-on-polymersomes. Samples were stained with OsO₄; PB appears dark, PS grey and PT is not visible.

9. Polymersomes with bicontinous membrane

Figure S9. Supporting TEM images of polymersomes with a bicontinous membrane morphology. Samples were stained with OsO₄; PB appears dark, PS grey and PT is not visible.

10. Polymersomes with lamellar membrane (core-shell)

Figure S10. Supporting TEM images of polymersomes with a lamellar membrane morphology. a) TEM overview image, **b**, **c**) close-up of the membrane. Samples were stained with OsO4; PB appears dark, PS grey and PT is not visible.

11. Supporting images to Figure 5 (Main Text)

Figure S11. TEM overview for Figure 5 (main text). a-c) $S_{512}B_{547}T_{464}$ fully developed spheres-on-spheres (Ace:IPA 90:10 (v/v)), flattened spheres-on-spheres (Ace:IPA 60:40 (v/v)), core-shell-spheres (Ace:IPA 10:90 (v/v)). **d-f)** $S_{298}B_{747}T_{161}$ double helices cylinders (Ace:IPA 90:10 (v/v)), cylinders with ribbon-like patchy structure (Ace:IPA 70:30 (v/v)), core-shell-cylinders (Ace:IPA 40:60 (v/v)). **g-i)** $S_{310}B_{383}T_{57}$ forming cylinders-on-elongated vesicles (Ace:IPA 90:10 (v/v)), vesicles with PB bicontinous membrane (Ace:IPA 70:30 (v/v)), vesicles with core-shell PB membrane (Ace:IPA 30:70 (v/v)).