1	Supporting Information
2	
3	UV-light-assisted gas sensor based on PdSe ₂ /InSe heterojunction for
4	ppb-level NO ₂ sensing at room temperature
5	Jin-Le Fan ^{a,b} , Xue-Feng Hu ^{a,b,*} , Wei-Wei Qin ^{a,b} , Zhi-Yuan Liu ^{a,b} , Yan-Song Liu ^{a,b} ,
6	Shou-Jing Gao ^{a,b} , Li-Ping Tan ^{a,b} , Ji-Lei Yang ^{a,b} , and Wei Zhang ^{a,b,*}
7	
8	^a Anhui Province Key Laboratory of Measuring Theory and Precision Instrument,
9	School of Instrument Science and Optoelectronics Engineering, Hefei University of
10	Technology, Hefei 230009, Anhui, P. R. China
11	
12	^b Academy of Optoelectronic Technology, Special Display and Imaging Technology
13	Innovation Center of Anhui Province, Hefei University of Technology, Hefei, Anhui
14	Province, 230009, P. R. China
15	

16 *Corresponding authors: <u>xuefeng.hu@hfut.edu.cn</u> (X. Hu) and <u>zhangw@hfut.edu.cn</u> (W. Zhang)

2 Scheme S1. Schematic diagram of the intelligent gas sensing platform (CGS-MT).

3 The room-temperature (25 °C) gas-sensing performance of this device was measured by an intelligent gas-sensing platform (CGS-MT, Elite Tech Co. Ltd, China) using 4 high-purity dry air (HPDA) as background gas, as shown in Scheme S1. The sensing 5 material was irradiated with 365 nm UV light and the intensity of UV light measured 6 by the energy meter (Coherent FieldMaxII-TO) was about 0.6 mW/cm². Note that all 7 initial gases are in the standard 4 L cylinders with a purity larger than 99.9% before 8 they are adjusted to a determined concentration. Then, the target gases were achieved 9 by adjusting the ratio of target gases to the carrier gas (HPDA) via the self-controlled 10 mass flow controllers (MFC), and the total flow rate of the gas mixture was 300 11

 $C_1 = \frac{F_0}{F_0 + F_1} \cdot C_0$ (where C_1 is the mixed target 13 gas concentration, C_0 is the standard gas concentration in the cylinder, and F_0 and F_1 14 are the flow rates of target gas and HPDA, respectively. The sum of F_0 and F_1 is 300 15 mL·min⁻¹.), when C_0 is 300 ppm NO₂, and F_0 and F_1 are controlled to be 10 and 290 16 mL·min⁻¹, respectively, C_1 is expected to be 10 ppm. The other NO₂ gases with 17 concentrations of 0.1 ppm, 0.5 ppm, 1 ppm, 3 ppm, 5 ppm, and 20 ppm and the other 18 gases of 10 ppm NO, NH₃, H₂, CO, and ethanol were obtained in the same way.

Note that in the study of the effect of humidity toward NO_2 , the dry air was divided into two ways, and one way was fed into the bubble to get humidity gas. Then, the

- 1 stable relative humidity (RH) values were obtained by adjusting the mass flow ratios of
- 2 dry and humidity gases in RH experiments.

2 Fig. S1 XPS spectra. (a-c) Survey, Pd 3d, and Se 3d spectrums of the PdSe₂ film,
3 respectively. (d-f) Survey, In 3d, and Se 3d spectrums of the InSe film, respectively.

1

2 Fig. S2 Optical image of the stacked PdSe2/InSe heterojunction in three different

3~ regions of the PdSe_2, InSe, and PdSe_2/InSe.

4

Fig. S3 By scanning a standard HOPG sample with a known work function of 4.6 eV,
the ^V_{CPD} of HOPG was 0.37 V, and then ^W_{tip} was calculated to be 4.97 eV.

1

2 Fig. S4 The selectivity of the sensor based on PdSe₂/InSe heterojunction toward 10
3 ppm different gases of (a) NO, (b) CO, (c) H₂, (d) ethanol and (e) NH₃.

4

2 Fig. S5 Responses of the PdSe₂/InSe heterojunction sensor toward 10 ppm NO₂ at
3 different relative humidity.