Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Printing nanoparticle-based isotropic/anisotropic networks for directional

electrical circuits

Sisi Chen, Qi Pan*, Tingqing Wu, Hongfei Xie, Tangyue Xue, Meng Su* and Yanlin

Song*

Fig. S1 Contact angles of water at the substrate (a) and the template (b).

а	b	
а	b	

Fig. S2 Optical images of (a) groove-shaped silicon wafer and (b) grid-shaped template. Scale bar: 100 μ m.

Fig. S3 Characterization of the grid-shaped template. (a) SEM images of the gridshaped template and (ii) magnified SEM images of the template in (i). Scale bars: i: 50 μ m, ii: 10 μ m. (b) The statistical height chart of transverse and longitudinal walls.

Fig. S4 Characterization of the Ag NPs. (a) SEM image, scale bar: 200 μ m. (b) Particle size distribution of the synthesized Ag NPs used in this work.

Fig. S5 The thickness of the printed micro/nano lines can be controlled by the concentration of Ag NPs. In this work, the width of printed lines can be manipulated from 650 nm to 2 μ m under the concentration of 5–60 mg mL⁻¹. Scale bar: 1 μ m.

Fig. S6 (a) Tested CC and the four evaporated electrodes A-D. (b) Application of networks in LED circuits. The circuits exhibit conducting states when they are accessed to different electrodes of CC.

Fig. S7 (a) Tested DC and the four evaporated electrodes A-D. (b) Application of networks in LED circuits. The circuits exhibit non-conducting states when they are accessed to different electrodes of DC.