Supplementary Information

Unraveling the Faradaic Electrochemical Efficiencies over Fe/Co Spinel Metal Oxides using Surface Spectroscopy and Microscopy Techniques.

Varchaswal Kashyap,^{a, b} Ajmal Pandikassala,^{a, b} Gourav Singla,^a Tuhin Suvra Khan,^{*,c} M. Ali Haider,^d C. P. Vinod,^{*,b, e} and Sreekumar Kurungot^{*,a, b}

^a Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 41108, India.

^b Academy of Scientific and Innovative Research, Postal Staff College Area, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh-201002, India.

^c Nanocatalysis Area, Light Stock Processing Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, Uttarakhand, India.

^d Renewable Energy and Chemicals Laboratory, Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi 110016, India.

^e Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 41108, India.

Email: k.sreekumar@ncl.res, cp.vinod@ncl.res.in, tuhin.khan@iip.res.in

Calculation of Work function(φ_m):

$$\varphi_m = h\nu - W$$

where, h = plank constant, v = frequency of photon; here, hv = 21.2 eV; W = width of the emitted photoelectron's peak from the UPS spectrum.

Work function (φ_m) for Co₃O₄ $(\varphi_1) = 5.6$ eV; Fe₂O₃ $(\varphi_2) = 6.1$ eV; Co₂FeO₄ $(\varphi_3) = 6.2$ eV; CoFe₂O₄ $(\varphi_4) = 6.3$ eV.

Conduction Band (CB.) and Valence Band (VB): For the calculation of the conduction band (CB) and valence band (VB), the following formulae were used as reported previously in the literature ¹⁻⁴:

$$E_{CB} = \chi - E_c - \frac{1}{2}E_g$$
$$E_{VB} = E_{CB} + E_g$$

where, E_{CB} is the energy of CB, E_C is the energy of the free electron, E_g is the bandgap of the semiconductor and E_{VB} is the energy of VB. Also, χ represents the absolute electronegativity of the semiconducting material in the Mulliken electronegativity. The detailed calculations of the various nanocomposites are as follows:

First ionization energy of cobalt = 760.4 kJ/mol = 760.4/96.48 = 7.88 eVFirst ionization energy of iron = 762.5 kJ/mol = 762.5/96.48 = 7.90 eVElectron affinity of cobalt = 63.7 kJ/mol = 63.7/96.48 = 0.66 eVElectron affinity of iron = 15.7 kJ/mol = 15.7/96.48 = 0.16 eV

$$\chi_{Co} = \frac{(EA + E_{ion})}{2} = \frac{(0.66 + 7.88)}{2} = 4.27 \ eV$$
$$\chi_{Fe} = \frac{(EA + E_{ion})}{2} = \frac{(0.16 + 7.90)}{2} = 4.03 \ eV$$
$$\chi_{0} = 7.49 \ eV; \quad \chi_{Co304} = 5.88 \ eV; \ \chi_{Co2Fe04} = 5.83 \ eV; \ \chi_{CoFe204} = 5.79 \ eV; \ \chi_{Fe203} = 5.84 \ eV$$
$$\underline{Co3O4} \qquad E_{CB} = \chi_{Co304} - E_{c} - \frac{1}{2} (E_{g.Co304}) = 5.88 - 4.5 - 1.15 = 0.23 \ eV$$
$$E_{VB} = E_{CB} + E_{g.Co304} = 0.23 + 2.3 = 2.53 \ eV$$

Co2FeO4
$$E_{CB} = \chi_{Co2FeO4} - E_c - \frac{1}{2} (E_{g.Co2FeO4}) = 5.83 - 4.5 - 1.25 = 0.08 \, eV$$

 $E_{VB} = E_{CB} - E_{g.Co2FeO4} = 0.08 + 2.5 = 2.58 \, eV$

CoFe2O4
$$E_{CB} = \chi_{CoFe2O4} - E_c - \frac{1}{2}(E_{g.CoFe2O4}) = 5.79 - 4.5 - 1.4 = -0.11 eV$$

 $E_{VB} = E_{CB} - E_{g.CoFe2O4} = -0.11 + 2.8 = 2.69 eV$

Fe2O3
$$E_{CB} = \chi_{Fe2O3} - E_c - \frac{1}{2} (E_{g.Fe2O3}) = 5.84 - 4.5 - 1.1 = 0.24 eV$$

 $E_{VB} = E_{CB} - E_{g.Fe2O3} = 0.24 + 2.2 = 2.44 eV$

Catalyst Slurry Preparation:

<u>Catalyst slurry for HER and OER</u>: 2 mg of the catalyst was dispersed in 1 ml of 3:2 water: isopropyl solution. Subsequently, 40 μ l of 5 wt. % Nafion solution was added as the binder. The dispersion was made feasible through ultra-sonication of the sample for 30 min. As such prepared catalyst slurry was drop coated on the glassy carbon electrode (geometrical surface area: 0.07 cm²), which was subsequently dried at room temperature.

<u>Catalyst slurry for ORR</u>: In a typical process, 2 mg of the catalyst along with 8 mg of Vulcan carbon and 40 μ l of the 5 wt. % Nafion solution were dispersed in 1 ml of water:isopropyl alcohol (3:2 v/v) mixture by ultra-sonicating for 1 h. 10 μ l of the catalyst slurry was coated over the surface of the glassy carbon electrode (geometrical surface area: 0.196 cm²). The electrode was dried at room temperature and subjected for the electrochemical studies.

Rotating Ring Disk Electrode Study:

The Rotating Ring Disc Electrode (RRDE) technique was used for estimating the percentage of H_2O_2 formed and the number of electrons transferred during the ORR process. A Pt ring (0.1866 cm²) surrounded glassy carbon disc electrode of an area of 0.2475 cm² was used as the working electrode by keeping the ring potential at 0.60 V (V *vs* Hg/HgO). Hg/HgO was used as the reference electrode and a graphite rod was used as the counter electrode in the studies. This analysis has been performed in O₂ saturated 0.1 M KOH solution.

The mathematical equations used for the RRDE analysis are given below:

$$H_2O_2(\%) = 200 \times \frac{\frac{I_r}{N}}{I_d + \frac{I_r}{N}}$$
$$n = 4 \times \frac{I_d}{I_d + \frac{I_r}{N}}$$

where,

- Ir Ring current
- Id Disc current
- N Collection efficiency of the ring electrode (0.37)
- n No of electrons

Calculation of bandgap from UV-visible absorption spectra:

The band gap is calculated by UV- Visible spectroscopy using the Tauc plot. By plotting the

graph between
$$(\alpha hv)^{\frac{1}{n}}$$
 vs. photon energy (hv).⁵

where,

- $\boldsymbol{\alpha}$ optical absorption coefficient
- h Plank's constant
- υ Frequency
- n Power factor (n=0.5 for direct transitions)

The energy band gap value is calculated by extrapolating the straight-line part of the curves to the zero-absorption coefficient value.

Fig. S1. The particle size distribution profiles of Fe_2O_3 (a), $CoFe_2O_4$ (b), Co_3O_4 (c), and Co_2FeO_4 (d) as calculated from the TEM analysis.

Fig. S2. EDAX of the Fe₂O₃ nanoparticles.

Fig. S3. EDAX of CoFe₂O₄ nanoparticles.

Fig. S4. EDAX of Co₃O₄ nanoparticles.

Fig. S5. EDAX of Co₂FeO₄ nanoparticles.

Fig. S6. Raman spectra of Co_3O_4 (a), Fe_2O_3 (b), Co_2FeO_4 (c), and $CoFe_2O_4$ (d).

Fig. S7. UV-Visible spectra of the Fe₂O₃, CoFe₂O₄, Co₃O₄ and Co₂FeO₄ recorded using the water:ethanol solvent mixture.

Fig. S8. Tauc plot of the Co₃O₄, Fe₂O₃, Co₂FeO₄, and CoFe₂O₄ nanoparticles.⁶⁻⁹

Fig. S9. Ultraviolet photoelectron spectra (UPS) of the Fe₂O₃, CoFe₂O₄, Co₂FeO₄ and Co₃O₄ nanoparticles.

Table S1. Deconvoluted O 1s peak parameters of the Co_3O_4 , Co_2FeO_4 , $CoFe_2O_4$ and Fe_2O_3 nanoparticles.

S.N.	Nanoparticle	Peak	OL	Ov	Oc
1	C03O4	position	529.9	531.5	532.8
		height	145616.9	48842.8	10498.7
		width	1.1	1.5	1.2
		Area (%)	185701.4	78023.0	16050.3
			(66.3 %)	(27.8 %)	(5.7 %)
2	Co ₂ FeO ₄	position	530.8	532.3	533.0
		height	130563.5	80129.0	33767.8
		width	1.7	1.5	2.1
		area	242879.2	125254.9	79972.4
			(54.2 %)	(27.9 %)	(17.8 %)
3	CoFe ₂ O ₄	position	530.68	531.9	533.0
		height	119651.1	83609.2	29957.8
		width	1.7	2	2.5
		area	218238.6	179425.7	78060.6
			(45.8 %)	(37.7 %)	(16.4 %)
4	Fe ₂ O ₃	position	529.4	530.9	532.1
		height	229202.7	64652.0	22786.5
		width	1.2	1.4	2.0
		area	341243.8	96260.6	484899.4
			(70.2 %)	(19.8 %)	(10.0 %)

Table S2. Deconvolute Co 2p and Fe 2p peak parameters of the Co₃O₄, Co₂FeO₄, CoFe₂O₄ and

 Fe_2O_3 nanoparticles.

S.N.	Metal	2p _{3/2} (eV)		$2p_{1/2}(eV)$		Satellite 1	Satellite 2
	Oxide					(eV)	(eV)
1	Co ₃ O ₄	Co ³⁺	779.8	Co ³⁺	794.8	786.5	803.6
			(A=162432;		(A=58622.2;	(A=18545.3;	(A=21249.3;
			W=1.6;		W=1.6;	W=2.5;	W=2;
			H=94335.8)		H=36601.1)	H=5260.4)	H=7340.8)
		Co^{2+}	781.3	Co^{2+}	796.5	789.5	805.5
			(A=296790.3;		(A=83990.1;	(A=17717.8;	(A=6996.9;
			W=2.7;		W=2.5;	W=2.3;	W=1.9;
			H=76977.4)		H=30701.8)	H=6642.3)	H=3517.2)
2	Co ₂ FeO ₄	Co^{3+}	780.0	Co^{3+}	795.8	784.7	802.1
			(A=147928.7;		(A=39840.6;	(A=59912.2;	(A=34540.3;
			W=2.5;		W=2.5;	W=3.7;	W=3.2;
			H=50338.7)		H=14955.3)	H=15158.6)	H=7980.0)
		Co^{2+}	782.1	Co^{2+}	797.5	787.6	804.6
			(A=65762.2;		(A=35424.9;	(A=67604.5;	(A=19091.8;
			W=2.6;		W=2.8;	W=4.7;	W=3.7;
			H=23860.3)		(H=9496.3)	H=13521.2)	H=4250.5)
		Fe ²⁺	710.7	Fe ²⁺	723.8	718.2	733.0
			(A=135327.8;		(A=63302.9;	(A=68578.4;	(A=11242.4;
			W=2.8;		W=3.2;	W=5.1;	W=2.5;
			H=45106.4)	-	H=14049.2)	H=12185.5)	H=3163.0)
		Fe ³⁺	713.2	Fe ³⁺	725.7		
			(A=121275.1;		(A=48100.8;		
			W=3.7;		W=3.9;		
			H=26984.0)		H=9787.6)		
3	CoFe ₂ O ₄	Co^{3+}	780.0	Co^{3+}	795.5	785.1	801.9
			(A=128710.9;		(A=41521.4;	(A=70420.3;	(A=28754.9;
			W=2.5;		W=2.8;	W=3.9;	W=3.8;
			H=41233.0)		H=10600.5)	H=16997.7)	H=5522.7)
		Co ²⁺	782.1	Co ²⁺	796.7	788.0	803.4
			(A=81191.2;		(A=21976.7;	(A=90033.4;	(A=19170.9;
			W=3.0;		W=2.5;	W=5.2;	W=3.4;
		- 21	H=25227.6)	- 21	H=8258.3)	H=15395.7)	H=4106.1)
		Fe ²⁺	710.7	Fe ²⁺	724.0	718.4	732.7
			(A=224118.9;		(A=126612.9;	(A=105608.0;	(A=20947.2;
			W=2.9;		W=3.5;	W=5.2;	W=3.8
			H=/1866.5)		H=28959.8)	H=19325.6)	H=46/2.3
		Fe ³⁺	713.5	Fe ³⁺	726.5		
			(A=133193.4;		(A=66133.7;		
			W=3.4;		W=3.9;		
			H=33981.2)		H=12939.2)		
4	Fe ₂ O ₃	Fe ²⁺	709.1	Fe ²⁺	722.7	716.9	731.1
			(A=243638.9;		(A=146835.2;	(A=161404.6;	(A=40813.6;
			W=2.5;		W=3.0;	W=6.6;	W=4.5;
			H=91565.8)		H=38769.2)	H=22815.4)	H=8498.8)

Fe ³⁺	711.4	Fe ³⁺	725.0	
	(A=174102.9;		(A=104031.7;	
	W=3.2;		W=4;	
	H=49390.3)		H=21140.7)	
	,			

Table S3. Bandgap (Eg), conduction band (CB), valence band (VB) and work function (φ) values of the Co₃O₄, Co₂FeO₄, CoFe₂O₄ and Fe₂O₃ nanoparticles. (Diff. OER: Potential difference from oxygen electrode potential; Diff. ORR: Potential difference from oxygen reduction electrode potential).

S.N.	Metal Oxide	Band Gap (eV)	C B (V vs NHE)	VB (V vs NHE)	Work function (φ) (eV)
1	Co ₃ O ₄	2.3	0.23 (Diff. OER*: ~ 1.0 eV)	2.53 (Diff. ORR*: ~ 1.3 eV)	5.6
2	Co ₂ FeO ₄	2.6	0.08 (Diff. OER*: ~ 1.15 eV)	2.58 (Diff. ORR*: ~ 1.35 eV)	6.2
3	CoFe ₂ O ₄	2.8	-0.11 (Diff. OER*: ~ 1.34 eV)	2.69 (Diff. ORR*: ~ 1.46 eV)	6.3
4	Fe ₂ O ₃	2.2	0.24 (Diff. OER*: ~ 0.9 eV)	2.44 (Diff. ORR*: ~ 1.21 eV)	6.1

DFT Method:

Plane-wave density functional theory (DFT) calculations as implemented in Vienna ab initio simulation package (VASP-5.3.5 version) were performed to calculate the oxygen vacancy formation energy for the Co₃O₄ and CoFe₂O₄ catalysts.¹⁰ Projector augmented wave method (PAW) was used for describing the interactions between the electrons and ions.¹¹ An energy cut-off of 396 eV was applied for truncating the plane-wave basis set. Perdew-Burke-Ernzerhof (PBE) exchange-correlation function developed by Perdew *et al.*, was used for all the DFT calculations.¹² Spin-polarized set-up was used, along with Hubbard U_{eff} parameters for Co and Fe of value 3.32 eV and 5.3 eV, respectively.¹³⁻¹⁴ The CoFe₂O₄ crystal geometry was obtained from the materials project database, whereas the Co₃O₄ crystal was obtained by replacing the

Fe with Co and performing lattice parameter optimization.¹⁵ Subsequently, the Co₃O₄ and CoFe₂O₄ bulk crystals were cleaved along the (001) direction to obtain the Co₃O₄(001) and CoFe₂O₄(001) surfaces. The Co₃O₄(001) and CoFe₂O₄(001) surface 3x3 supercell slabs were modelled using a slab of four Co(III)/Fe(III) atomic layers and three Co(II) atomic layers, having chemical formula Co(II)₆Co(III)₁₆O₃₂ and Co(II)₆Fe(III)₁₆O₃₂ , as shown in Fig. S6. Both the bare Co(II)₆Co(III)₁₆O₃₂ and Co(II)₆Fe(III)₁₆O₃₂ (001) surface slabs have an overall formula charge of - 4. In order to balance the formal charge and to mimic the experimental OER condition, both the top and bottom surfaces of the Co₃O₄(001) and CoFe₂O₄(001) surface slabs were modified with 4H⁺, 2OH⁻ and 2H₂O, as has been suggested by Plaisance *et al.*¹⁶ The Co₃O₄(001) and CoFe₂O₄(001) surfaces have been shown in Fig. 9(a) and 9(b). Monkhorst-Pack k-point mesh of 2 x 2 x 1 and Gaussian smearing of 0.01 eV was used.¹⁷ For all the geometry optimization calculations, the bottom four atomic layers were kept fixed to their bulk configurations.

Fig. S11. $Co_3O_4(001)$ and $CoFe_2O_4(001)$ surfaces as cleaved from bulk geometry. Color code: Co (blue), Fe (green), O (red) and H (white).

References:

- 1. Y. Xu and M. A. A. Schoonen, Am. Min. 2000, 85, 543-556.
- 2. S. Asadzadeh-Khaneghah and A. Habibi-Yangjeh, J. Clean. Prod. 2020, 276, 124319.
- M. Pirhashemi, A. Habibi-Yangjeh and S. Rahim Pouran, J. Ind. Eng. Chem. 2018, 62, 125.
- W. A. Smith, I. D. Sharp, N. C. Strandwitz and J. Bisquert, *Energy Environ. Sci.* 2015, 8, 2851-2862.
- 5. A. R. Zanatta, *Sci. Rep.* **2019**, 9, 11225.
- L. Qiao, H. Y. Xiao, H. M. Meyer, J. N. Sun, C. M. Rouleau, A. A. Puretzky, D. B. Geohegan, I. N. Ivanov, M. Yoon, W. J. Weber, M. D. Biegalski, *J. Mater. Chem. C* 2013, 1, 4628;
- Seki, Munetoshi. "Bandgap-Engineered Iron Oxides for Solar Energy Harvesting" In Iron Ores and Iron Oxide Materials, edited by Volodymyr Shatokha. London: IntechOpen, 2018. 10.5772/intechopen.73227;
- 8. H. Mashiko, T. Oshima, A. Ohtomo, *Appl. Phys. Lett.* **2011**, 99, 241904;
- 9. T. J. Smart, T. A. Pham, Y. Ping, T. Ogitsu, *Phys. Rev. Mater.* **2019**, 3, 102401.
- 10. G. Kresse and J. Furthmüller, *Phys. Rev. B* **1996**, 54, 11169-11186.
- 11 P. E. Blöchl, *Phys. Rev. B* **1994**, 50, 17953-17979.
- 12 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.* **1996**, 77, 3865-3868.
- a) D. Vernekar, M. Dayyan, S. Ratha, C. V. Rode, M. A. Haider, T. S. Khan and D. Jagadeesan, ACS Catal. 2021, 11, 10754-10766;
- B. Zhang, X. Zheng, O. Voznyy, R. Comin, M. Bajdich, M. García-Melchor, L. Han,
 J. Xu, M. Liu, L. Zheng, F. P. G. d. Arquer, C. T. Dinh, F. Fan, M. Yuan, E. Yassitepe,
 N. Chen, T. Regier, P. Liu, Y. Li, P. D. Luna, A. Janmohamed, H. L. Xin, H. Yang, A.
 Vojvodic and E. H. Sargent, *Science* 2016, 352, 333-337.

- A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder and K. A. Persson, *APL Materials* 2013, 1, 011002.
- 16. C. P. Plaisance and R. A. van Santen, J. Am. Chem. Soc. 2015, 137, 14660-14672.
- 17. H. J. Monkhorst and J. D. Pack, *Phys. Rev. B*, **1976**, 13, 5188-5192.