Electronic Supplementary Information

Two-dimensional natural hyperbolic materials: from polaritons modulation to applications

 Asgarie ${ }^{e}$

${ }^{\text {a }}$ School of Science, Tianjin University of Commerce, Tianjin 300134, P. R. China
${ }^{\mathrm{b}}$ Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin 300134, P. R. China
${ }^{c}$ State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, P. R. China
${ }^{\mathrm{d}}$ Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, P. R. China
${ }^{\mathrm{e}}$ School of Physics, Institute for Research in Fundamental Sciences, IPM, Tehran 19395-5531, Iran

Lonrentz model for calculating anisotropic permittivities of HMs

To describe the infrared permittivities of $\alpha-\mathrm{MoO}_{3}$ and $\alpha-\mathrm{V}_{2} \mathrm{O}_{5}$ crystals in Fig. 3 in the main article, a three-parameter Lorentz oscillator model is used with

$$
\varepsilon_{i j}=\varepsilon_{i j}^{\infty} \prod_{m}^{N} \frac{\left(\omega_{j m}^{L O}\right)^{2}-\omega^{2}-i \omega \Gamma_{j m}^{L O}}{\left(\omega_{j m}^{T O}\right)^{2}-\omega^{2}-i \omega \Gamma_{j m}^{T o}}, \quad j=x, y, z
$$

where $\varepsilon_{j j}$ denotes the principal components of the permittivity tensor, $\varepsilon_{i j}^{\infty}$ is the high-frequency dielectric constant. The parameters $\omega_{j m}^{L o}$ and $\omega_{j m}^{T o}$ represent the longitude and transverse optical phonon frequencies, respectively. The factor $\Gamma_{j m}$ is the broadening factor of the Lorentzian lineshape. The superscripts x, y, and z indicate three principal axes of the crystal along the crystal directions [100], [001], and [010], respectively, and m is the mode index along three crystal directions. The detailed parameter values utilized in our calculation for $\alpha-\mathrm{MoO}_{3}$ and $\alpha-\mathrm{V}_{2} \mathrm{O}_{5}$ are shown in Table S1.

Table S1 Parameter values used for calculating the anisotropic permittivities of $\alpha-\mathrm{MoO}_{3}$ and $\alpha-\mathrm{V}_{2} \mathrm{O}_{5}$

HMs	Crystal directions	m	$\omega_{j m}^{L O}\left(\mathrm{~cm}^{-1}\right)$	$\omega_{j m}^{T o}\left(\mathrm{~cm}^{-1}\right)$	$\Gamma_{j m}^{L o}\left(\mathrm{~cm}^{-1}\right)$	$\Gamma_{j m}^{T o}\left(\mathrm{~cm}^{-1}\right)$	$\varepsilon_{i j}^{\text {® }}$
$\alpha-\mathrm{MoO}_{3}$	[100]	1	972	820	4.0	4.0	4.0
	[001]	1	851	545	4.0	4.0	5.2
	[010]	1	1004	958	2.0	2.0	2.4
$\alpha-\mathrm{V}_{2} \mathrm{O}_{5}$	[100]	1	76.2	72.4	4.2	3.6	6.559
		2	265.5	261.0	8.0	13.0	
		3	390.5	303.0	12.2	15.0	
		4	586.0	411.0	30.0	5.0	
		5	959.0	767.5	50.0	30.0	
		6	982.0	980.5	15.0	10.0	
	[001]	1	490.0	473.0	15.0	18.0	6.142
		2	1038.0	975.5	2.5	2.5	
	[010]	1	225.0	212.0	7.5	10.5	3.899
		2	312.5	284.0	10.2	7.8	
		3	842.5	506.5	18.0	21.0	

