## **Integrating Ferromagnetism and Ferroelectricity in an Iron**

## **Chalcogenide Monolayer: A First-Principle Study**

Kaijuan Pang<sup>a</sup>, Xiaodong Xu<sup>b</sup>, Yadong Wei<sup>b</sup>, Tao Ying<sup>a</sup>, Weiqi Li<sup>a,c\*</sup>, Jianqun Yang<sup>b</sup>,

Xingji Li<sup>b</sup>, Yongyuan Jiang<sup>a, d, e\*</sup>, Guiling Zhang<sup>f</sup>, Weiquan Tian<sup>g\*</sup>

<sup>a</sup> School of Physics, Harbin Institute of Technology, Harbin 150001, China

<sup>b</sup> School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

° State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Xi'an, 710024, China

<sup>d</sup> Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China

<sup>e</sup> Key Lab of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin 150001, China

<sup>f</sup> School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China

<sup>g</sup> School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China



Figure.S1 The density of states (DOS) of FeSSe. (a) spin-polarized (b) non-spin-polarized.



**Figure.S2** The orbital-resolved band structure of FeSSe as a function of out-of-plane angle  $\theta$  with SOC ( $\varphi=90^\circ$ ). The green, red, blue, orange and purple represent Se- $p_x$ , Se- $p_y$ , Se- $p_z$ , Fe- $t_{2g}(d_{xy}, d_{yz}, d_{xz})$  and Fe- $e_g(dx^2-y^2, dz^2)$ . (a) [0°, 90°]; (b) [30°, 90°]; (c) [60°, 90°]; (d) [90°, 90°]; (e) [120°, 90°]; (f) [150°, 90°]; (g) [180°, 90°].



**Figure.S3** (a-f) The orbital-resolved band structure of FeSSe as a function of out-of-plane angle  $\theta$  with SOC ( $\varphi=0^\circ$ ). The green, red, blue, orange and purple represent Se- $p_x$ , Se- $p_y$ , Se- $p_z$ , Fe- $t_{2g}(d_{xy}, d_{yz}, d_{xz})$  and Fe- $e_g(dx^2-y^2, dz^2)$ . (a) [30°, 0°]; (b) [60°, 0°]; (c) [90°, 0°]; (d) [120°, 0°]; (e) [150°, 0°].



**Figure.S4** (a-f) The orbital-resolved band structure of FeSSe as a function of out-of-plane angle  $\theta$  with SOC ( $\varphi$ =30°). The green, red, blue, orange and purple represent Se- $p_x$ , Se- $p_y$ , Se- $p_z$ , Fe- $t_{2g}(d_{xy}, d_{yz}, d_{xz})$  and Fe- $e_g(dx^2-y^2, dz^2)$ . (a)



**Figure.S5** (a-f) The orbital-resolved band structure of FeSSe as a function of out-of-plane angle  $\theta$  with SOC ( $\varphi$ =60°). The green, red, blue, orange and purple represent Se- $p_x$ , Se- $p_y$ , Se- $p_z$ , Fe- $t_{2g}(d_{xy}, d_{yz}, d_{xz})$  and Fe- $e_g(dx^2-y^2, dz^2)$ . (a) [30°, 60°]; (b) [60°, 60°]; (c) [90°, 60°]; (d) [120°, 60°]; (e) [150°, 60°].

|                   | [0°,0°]  | [30°,0°]  | [60°,0°]  | [90°,0°]  | [120°,0°]  | [150°,0°]  | [180°,0°]  |
|-------------------|----------|-----------|-----------|-----------|------------|------------|------------|
| $\Delta G_1(meV)$ | 121.31   | 89.62     | 46.75     | 16.82     | 44.71      | 86.71      | 121.36     |
| $\Delta G_2(meV)$ | 117.38   | 84.79     | 37.31     | 0         | 36.00      | 78.78      | 116.43     |
| $\Delta E(meV)$   | 29.24    | 27.66     | 21.73     | 0         | -14.94     | -23.62     | -29.00     |
|                   | [0°,30°] | [30°,30°] | [60°,30°] | [90°,30°] | [120°,30°] | [150°,30°] | [180°,30°] |
| $\Delta G_1(meV)$ | 121.31   | 90.43     | 47.04     | 17.20     | 43.70      | 85.96      | 121.36     |
| $\Delta G_2(meV)$ | 117.38   | 84.21     | 36.94     | 0         | 37.75      | 80.17      | 116.43     |
| $\Delta E(meV)$   | 29.24    | 26.69     | 20.52     | 0         | -16.29     | -24.63     | -29.00     |
|                   | [0°,60°] | [30°,60°] | [60°,60°] | [90°,60°] | [120°,60°] | [150°,60°] | [180°,60°] |
| $\Delta G_1(meV)$ | 121.31   | 90.88     | 47.32     | 17.60     | 43.04      | 85.78      | 121.36     |
| $\Delta G_2(meV)$ | 117.38   | 84.62     | 36.69     | 0         | 40.26      | 82.07      | 116.43     |
| $\Delta E(meV)$   | 29.24    | 25.41     | 18.58     | 0         | -18.30     | -25.76     | -29.00     |

**Table.S1** The value  $G_1$ ,  $G_2$  and  $\Delta E$  for different  $[\theta, \phi]$ .



**Figure.S6** (a-d) The band structure of FeSSe as a function of in-plane angle with SOC. The red, green, orange and blue represent  $\varphi = 0, 30^{\circ}, 60^{\circ}, 90^{\circ}$ . (a)  $[30^{\circ}, \varphi]$ ; (b)  $[60^{\circ}, \varphi]$ ; (c)  $[90^{\circ}, \varphi]$ ; (d)  $[120^{\circ}, \varphi]$ .



Figure.S7 Magnetization direction-dependent Fermi surfaces of FeSSe. (a) [0°, 90°]; (b) [150°, 90°]; (c) [180°, 90°].



**Figure.S8** (a) The average electrostatic potential perpendicular to the surface ( $\Delta V$ ) of FeSSe with FM state without strain. (b-c) The orbital-resolved band structure of FeSSe as a function of biaxial strain with SOC ( $\theta$ =90°,  $\varphi$ =90°). The green, red, blue, orange and purple represent Se- $p_x$ , Se- $p_y$ , Se- $p_z$ , Fe- $t_{2g}(d_{xy}, d_{yz}, d_{xz})$  and Fe- $e_g(dx^2-y^2, dz^2)$ . (b) -6%; (c) 6%. The color intensity denotes the amplitude of the orbital-resolved character.



**Figure.S9** The orbital-resolved band structure of FeSSe as a function of uni-axially strain with SOC ( $\theta$ =90°,  $\varphi$ =90°). The green, red, blue, orange and purple represent Se- $p_x$ , Se- $p_y$ , Se- $p_z$ , Fe- $t_{2g}(d_{xy}, d_{yz}, d_{xz})$  and Fe- $e_g(dx^2-y^2, dz^2)$ . (a) -6%; (b) -4%; (c) -2%; (d) 2%; (e) 4%; (f) 6%. The color intensity denotes the amplitude of the orbital-resolved character.



**Figure.S10** Project density of state of FeSSe monolayer as a function of biaxial strain in the range of -6% to 6%. (a) -6%; (b) -4%; (c) -2%; (d) 2%; (e) 4%; (f) 6%.