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S1 Kronig-Penney model in the effective-mass approximation

We follow the derivation and notation of Grundmann,1 whose approach is closely based on Kronig and Penney’s original solution.2 We
generalize the solution to allow for different effective masses in the square well and barrier.

Consider the periodic square well potential above. The wavefunctions in the well (0 ≤ x ≤ a) are oscillatory with wavenumber K,
while in the barrier (−b ≤ x ≤ 0) they are exponential with wavenumber κ,

ΨW (x) = AeiKx +Be−iKx (1)

ΨB(x) =Ceκx +De−κx. (2)

We apply the usual boundary conditions requiring that the wavefunction and its derivative (more generally the probability current
Ψ′(x)/m∗ where m∗ is the effective mass) are continuous at the boundaries x = 0 and x = a. To obtain ΨB(a) and Ψ′

B(a) we use Bloch’s
theorem Ψ(x+P) = eikPΨ(x) where k is the crystal wavenumber and P = a+b is the period. This yields†

A+B =C+D (3)

(1/mW )(iKA− iKB) = (1/mB)(κC−κD) (4)

AeiKa +Be−iKa = eik(a+b)(Ce−κb +Deκb) (5)

(1/mW )(iAKeiKa − iKBe−iKa) = (1/mB)eik(a+b)(κCe−κb −κDeκb). (6)

A solution exists only if the matrix of coefficients has determinant zero. This condition leads to an implicit equation for the energy E as
a function of the wavenumber k,

cosk(a+b) =A(E), (7)

where we have defined A(E) as the generalization of the function B(E) in Ref. 1 to the case of different effective masses,

A(E) = cosaK coshbκ − sinaK sinhbκ

(
KmB

2κmW
− κmW

2KmB

)
. (8)

The energy dependence of A(E) arises from the dispersion relations relating K and κ to the energy E. In the next section we discuss
two choices for these: parabolic dispersion and the more accurate dispersion given by the two-band Kane model.3 The effective masses
mW and mB in the well and barrier, respectively, are constants in the case of parabolic dispersion but depend on energy within the Kane
model. The Kronig-Penney band structure E(k) is obtained implicitly by choosing a value of k and then numerically solving Eq. 8 for
E. Multiple solutions exist for each value of k and correspond to different subbands. The extrema of these subbands occur at k = 0
and k = π/(a+b) and thus the width W of the lowest subband is given by the difference ∆E between the first roots satisfying A(E) =±1.

S2 Analytical expression for the width of the lowest subband of the Kronig-Penney model
In the Kronig-Penney model, the extrema Ei of the band structure E(k) can be found by solving the equation

A(E) = cosaK coshbκ − sinaK sinhbκ

(
KmB

2κmW
− κmW

2KmB

)
=±1 (9)

where a, mW , K and b, mB, κ are the width, effective mass, and wavenumber for the quantum well and barrier, respectively. This
expression depends on the energy E through the dispersion relations assumed in each region. Our derivation of the superlattice
bandwith does not depend on these relations but we will give results for specific choices at the end of this section. Each Kronig-Penney
band has two extrema and thus the width of the lowest-lying band is the difference of the first two roots, W = E2 −E1. In the following
we develop an analytical expression for W valid in the limit of large U .

We begin by defining a characteristic energy associated with the barrier, U0 = h̄2/2mBb2. When the barrier U is large compared
to both E and U0, the cosh and sinh terms in Eq. 9 can be approximated by simple exponentials. This leads to a decaying oscillatory
function that accurately approximates A(E) in the limit of large U ,

Ã(E) =
1
2

e(U/U0)
1/2

[
cosaK +

1
2

(a
b

)(mW

mB

)(
U
U0

)1/2 sinaK
aK

]
, (10)

†Equations 5 and 6 fix several misprints in Eqs. 6.11c and 6.11d of Ref. 1

2



To obtain W we linearize Ã(E) around its first zero. This root can be easily found when U is large because the cosine term is negligible
and thus the desired root E0 is given by the condition aK = π.

To perform the linearization we simply evaluate the derivative dÃ(E)/dE at E0. The approximate Kronig-Penney bandwidth W̃ is
then given by two times the reciprocal of this derivative. The result is

W̃ = e−(U/U0)
1/2

W0, (11)

where

W0 = 4
√

2
(

mB

mW

)(
K
K′

)(
h̄2/mBa2

U

)1/2

(12)

and the prime denotes the derivative with respect to energy. Equations 11 and 12 give the most general expression for the superlattice
bandwidth. If specific dispersion relations are assumed then a more explicit expression can be obtained. Here we give two examples
that correspond to the assumptions of the main paper.

We first assume standard parabolic dispersion, h̄K = [2m0
W E]1/2 in the well region and h̄κ = [2m0

B(U −E)]1/2 in the barrier region.
The root E0 is then simply the energy of the lowest bound state of the infinite square well, E0 = h̄2

π2/2m0
W a2. By evaluating Eq. 12 at

this energy we obtain the explicit expression

W0 = 8
√

2

(
m0

B
m0

W

)(
h̄2

π2

m0
W a2

)(
h̄2/m0

Ba2

U

)1/2

(13)

Alternatively, we can adopt a more realistic dispersion relation for the PbS well. The bands near the fundamental gap at the L point
can be accurately parameterized by a two-band Kane model defined by the Kane energy Ep (see Section S3 for details). This model
leads to an energy-dependent effective mass mW = m0

W (1+3mE/m0
W Ep) and a more complicated dispersion h̄K = [2mW E]1/2. The band

structure is parabolic at the zone center and then becomes asymptotically linear with constant band velocity v given by Ep = 6mv2. The
root E0 now takes the form

E0 = (
m0

W
m

)Ep

[
(1+6h̄2

π
2m/(m0

W )2a2Ep)
1/2 −1

]
/6, (14)

By evaluating Eq. 12 at this energy we obtain the expression

W0 = 8
√

2

(
m0

B
m

)(
Ep

3

)1−

(
1+

6h̄2
π2m

(m0
W )2a2Ep

)−1/2
( h̄2/m0

Ba2

U

)1/2

. (15)

In the limit of large Kane energy Ep, these expressions for E0 and W0 correctly reduce to the parabolic results.
To summarize, our expressions show that the Kronig-Penney bandwidth W decays approximately exponentially with the square root

of the height of the potential barrier. All the other physical parameters appear in a prefactor that varies more slowly. The detailed form
of this prefactor is determined by the dispersion relations.

S3 Kronig-Penney model beyond the effective-mass approximation: Kane model of coupled valence and
conduction bands

The Kane model for the coupled valence and conduction bands of a single material is defined by the Hamiltonian

H(k) =

(
Ec −ih̄ kP

m
√

3
ih̄ kP

m
√

3
Ev

)
. (16)

The Kane momentum matrix element P = −i⟨s|P̂|Z⟩ is related to the Kane energy Ep = 2|P|2/m where m is the mass of a free electron.
Our numerical values for Ep are given in Section S4. We diagonalize this matrix to obtain

(Ec −E)(Ev −E) =
1
3

h̄2

m2 P2k2 =
Ep

3
h̄2

2m
k2. (17)

Equation 17 is quadratic in E and so there are two eigenvalues E±(k) which are symmetric about the midpoint of the band gap
(Ev+Ec)/2 and with extrema at Ec and Ev, respectively. We select the upper eigenvalue and drop the + subscript to write the dispersion
relation as

E(k) = Ec +
1
2

Eg

(√
1+2h̄2k2/Egm∗−1

)
(18)

where the band-edge mass m∗ is related to the band gap and Kane energy by m∗ = 3mEg/Ep.
We now turn to the Kronig-Penney model and use the above Hamiltonian to describe both the PbS quantum well and the CsPbI3

barrier. In the PbS quantum well (W) the Hamiltonian depends on the wavenumber K inside the well,

HW (K) =

(
EW

c −ih̄ KPW

m
√

3
ih̄ KPW

m
√

3
EW

v

)
. (19)

3



The upper band has the dispersion relation

EW (K) = EW
c +

1
2

EW
g

(√
1+2h̄2K2/EW

g m0
w −1

)
(20)

where the band-edge mass m0
w is given by m0

W = 3mEW
g /EW

p . The corresponding eigenvector is

v =

(
1

ΘW (K)

)
(21)

where for convenience we have defined

Θ
W (K) = ih̄

KPW

m
√

3
1

EW (K)−EW
v
. (22)

The wave function in the quantum well can therefore be written

ΨW (x) = AeiKx
(

1
ΘW (K)

)
+Be−iKx

(
1

−ΘW (K)

)
(23)

which is analogous to Eq. 1 in Section S1. In the CsPbI3 barrier (B) the Hamiltonian HB(κ) has the same form as Eq. 19 and thus the
wavefunction can be written as

ΨB(x) =Ceκx
(

1
−iΘB(κ)

)
+De−κx

(
1

iΘB(κ)

)
(24)

which is analogous to Eq. 2 in Section S1 and where for convenience we have defined

Θ
B(κ) = ih̄

κPB

m
√

3
1

EB(κ)−EB
v
. (25)

We now apply the boundary conditions for the Kronig-Penney model. In Ref. 4 we showed that continuity of the probability flux density
across the boundary x = 0 requires that (

Ψc
W (0)

PW Ψv
W (0)

)
= Ttr

(
Ψc

B(0)
PBΨv

B(0)

)
(26)

where c and v denote the conduction and valence components and Ttr is a 2×2 matrix with determinant 1. We will set Ttr to the unit
matrix. Equation 26 then becomes (

A+B
PW (A−B)ΘW (K)

)
=

(
C+D

−iPB(C−D)ΘB(κ)

)
(27)

A second pair of equations is obtained for the boundary x = a using Bloch’s theorem. We collect all four equations into a form analogous
to Eqs. 3–6 in Section S1:

A+B =C+D (28)

PW (A−B)ΘW (K) =−iPB(C−D)ΘB(κ) (29)

AeiKa +Be−iKa = eik(a+b)(Ce−κb +Deκb) (30)

PW
Θ

W (K)(AeiKa −Be−iKa) = ieik(a+b)PB
Θ

B(κ)(−Ce−κb +Deκb) (31)

A solution exists only if the matrix of coefficients has determinant zero. This condition leads to an implicit equation for the energy E as
a function of the wavenumber k,

cosk(a+b) = A(E), (32)

where A(E) has a form analogous to A(E) from Section S1,

A(E) = cosaK coshbκ − sinaK sinhbκ

(
PW ΘW (K)

2PBΘB(κ)
− PBΘB(κ)

2PW ΘW (K)

)
. (33)

Using the Kane energies EW
p = (PW )2/m and EB

p = (PB)2/m it is easy show that Eq. 33 can be written equivalently as

A(E) = cosaK coshbκ − sinaK sinhbκ

(
KmB

2κmW
− κmW

2KmB

)
(34)

where the masses are now the energy-dependent effective masses mW = m0
W (1+ 3mE/m0

W EW
p ) plus an analogous expression for mB.

Equations 8 and 34 are identical which establishes that solving the Kronig-Penney model using the Kane model leads to the same result
as the standard solution with energy-dependent masses in the well and barrier.
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S4 Material parameters for the Kronig-Penney model
We used the following values for the material parameters of the PbS well (W) and CsPbI3 barrier (B) in the Kronig-Penney model.

Parameter PbS (W) Ref. CsPbI3 (B) Ref.
Band gap, Eg (eV) 0.41 5 1.84 6
Band-edge mass, m0 (m) 0.09 3 0.32 6
Kane energy, Ep (eV) 13.7 3 17.39 6
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S5 Simple model of the electrostatic shift from the halogen ligands
Consider a layer of halogen atoms adsorbed on PbS(100) at a distance h from the surface. Assume each halogen accepts 1 electron
from the PbS. We approximate the resulting charge distribution as being completely localized along the surface normal and uniformly
smeared out in the plane, exactly like a textbook parallel-plate capacitor. This creates a uniform electric field E(x) between the surface
and the halogen layer that depends only on the coverage x of halogens per unit area. The electrostatic shift due to this dipole layer of
thickness h is simply ∆V (x) = ehE(x). Below we derive a simple expression for E(x).

There are two contributions to E(x). The first is from the charge transfer mentioned above and is proportional to the halogen
coverage and therefore can be written Ax where A is a single constant for all the halogens.

The second contribution arises from the polarization of the halogen atoms due to the electric field they experience. This contribution
is proportional to three quantities: the atomic polarizability α of the halogen, the coverage x, and the electric field. It can therefore can
be written BαxE(x) where B is a constant for all halogens.

Putting these two contributions together we find that E(x) = Ax−BαxE(x), which can be easily solved for the electric field:

E(x) = Ax
1+Bαx

. (35)

The electrostatic shift is therefore
∆V (x) =

ehAx
1+Bαx

. (36)

This expression describes the DFT results from Fig. 3(b) very well, as shown by the solid curves and symbols below, respectively. The
constants A and B can be written in terms of various fundamental constants but were here treated as fitting parameters for simplicity.
The values of h were obtained from our DFT calculations and the values of α are from Ref. 7 as tabulated below.

As discussed in the main text, this model explains the behavior of the DFT results at both low and high halogen coverage. At small
values of x, Eq. 36 shows that ∆V (x) is linearly proportional to x with a coefficient h (which varies modestly with the halogen). For large
values of x, ∆V (x) saturates at a constant whose value is proportional to h/α (which varies strongly with the halogen).

Parameter F Cl Br I

Distance, h (Å) 2.33 2.69 2.83 3.12
Polarizability, α (a.u.) 3.75 14.6 21.0 32.9
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