Supporting Information

Chloride ions directed synthesis of plate-like Cu₂O mesocrystals for effective

nitrogen fixation

Jie Wang,^a Fu Tang,^{*,a} Junheng Gao,^a Chuang Yao,^b Sheng Zhang,^a and Lidong Li^{*,a}

^a State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.

^b Key Laboratory of Extraordinary Bond Engineering and Advance Materials Technology (EBEAM) of Chongqing, Yangtze Normal University, Chongqing 408100, P. R. China.

Fig. S1. (a) XRD patterns and (b) TEM image of the prepared CuCl precipitates. (c) Cu element and (d) Cl element mapping images of CuCl precipitates.

Fig. S2. (a) UV-vis absorption spectra, (b) XRD patterns (c) XPS patterns and (d) SEM images of Cu/CuO when ratio of Cu^{2+}/Cl^{-} was 2:0.

Fig. S3. (a) UV-vis absorption spectrum, (b) XRD patterns and (c) XPS patterns of the sample when ratio of Cu^{2+}/Cl^{-} was 2:1. The inset in (a) was the photograph of the solution of the prepared sample.

Fig. S4. (a) TEM image and (b) SAED pattern of Cu₂O-NPs prepared without addition of PAM.(c) HR-TEM image and FFT image of the selected area (yellow box) in (a), (d) XPS pattern of Cu₂O-NPs.

Fig. S5. (a)UV-vis absorption spectra of indophenol assays kept with different concentrations of NH⁴⁺. (b) A calibration curve used to estimate the concentrations of NH⁴⁺ ions.

Fig. S6. UV-vis absorption spectra of indophenol assays kept with different times during photocatalytic nitrogen reduction for 2 h under visible light irradiation ($\lambda > 420$ nm) at room temperature. (a) Cu₂O-NPs, (b) Cu₂O-MC-S and (c) Cu₂O-MC-P.

Fig. S7. UV-vis absorption spectra of indophenol assays kept with different times during photocatalytic nitrogen reduction for 2 h under 395 nm irradiation at room temperature. (a) Cu₂O-NPs, (b) Cu₂O-MC-S and (c) Cu₂O-MC-P.

Fig. S8. Mass spectra of the indophenol products obtained by reaction of phenol with ammonia generated from photocatalytic ${}^{14}N_2$ or ${}^{15}N_2$ reduction. The inset showed the chemical structure of the indophenol product, with m/z = 198 (${}^{14}N$) and m/z = 199 (${}^{15}N$).