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Note S1 

Synthesis of In2S3 precursor. The In2S3 precursor on carbon cloth was synthesized by a facile 

solvothermal method. Firstly, a stoichiometric mixture of 2.0 mmol InCl3 and 8.0 mmol thioacetamide was 

dispersed in 40 mL absolute ethanol and then transferred to a Teflon-lined stainless-steel autoclave. Then, 

a piece of carbon cloth with the size of 4 cm × 2 cm was immersed into the solution and heated at 70 °C for 

18 h to synthesize In2S3 nanosheets on the surface of carbon cloth. After naturally cooling to room 

temperature, the carbon cloth loaded with the In2S3 precursor was taken out and rinsed using deionized 

water and ethanol several times, and finally dried at 65 °C for further experiments.   
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Fig.  S1. The calculated band structure of In4/3P2Se6 using Perdew-Burke-Ernzerhof (PBE) functional.  
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Fig. S2 Adsorption energies of benzylamine molecular on In, P and Se sites of In4/3P2Se6 monolayer. 
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Fig. S3 (a-c) Low- and high-magnification SEM images of In2S3 nanosheets grown on carbon cloth. (d-e) EDX 

elemental mappings (d) and spectrum (e) of In and S in the In2S3 nanosheets on carbon cloth. (f) XRD pattern 

of In2S3 nanosheets grown on carbon cloth.  

From the SEM images in Fig. S3, the In2S3 nanosheets were evenly distributed on the surface of carbon 

cloth, showing a honeycomb-like nanosheet structure. The energy dispersive X-ray spectrum (EDX) mapping 

also showed that the whole surface of carbon cloth was uniformly covered by In2S3 nanosheets with the In: 

S element ratio of 2:3 (Fig. S3d-e). X-ray diffraction (XRD) pattern (Fig. S3f) shows an obvious diffraction 

peak at 47.9 °, assigned to the (440) crystal plane of cubic In2S3 (PDF#32-0456) crystal.  
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Fig. S4 Schematic of space confined chemical vapor conversion method with tube furnace for In4/3P2Se6 

nanosheet synthesis (“CC” in (a) denotes as carbon cloth). 
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Fig. S5 Low-magnification SEM images of In4/3P2Se6 nanosheets grown on carbon cloth.  
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Fig. S6 (a) SEM image of In4/3P2Se6 nanosheets grown on one carbon fiber of the carbon cloth. (b-d) EDX 

elemental mappings of In, P and Se of the In4/3P2Se6 nanosheets grown on one carbon fiber of the carbon 

cloth. (e) EDX spectrum collected from marked region in a, showing the atomic ratio of In: P: Se as 1: 1.5: 

4.4. 
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Fig. S7 XPS high-revolution scans of In 3d, P 2p and Se 3d regions in the In4/3P2Se6 nanosheet sample.  
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Fig. S8 UPS spectrum of the In4/3P2Se6 nanosheet film on indium tin oxide (ITO) glass. From this UPS 

spectrum, the VBM level of In4/3P2Se6 is estimated to be at 1.18 V versus NHE (-5.62 eV vs Vacuum level, 

which is calculated by subtracting the He I photon energy (21.22 eV); the CBM can be then calculated by 

using ECB = EVB – Eg, which is estimated to be at -0.76 V versus NHE (-3.68 eV vs Vacuum level).1, 2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In
te

n
s
it
y
 (

a
.u

.)

10 5 015

Binding energy (eV)

 

 

 

3

In
te

n
s
it
y
 (

a
.u

.)

Binding energy (eV)

0.92 eV

2 1 04

16.52

20



  

11 

 

 

Fig. S9 Mott-Schottky plots for the In4/3P2Se6 electrode at 1000 and 2000 Hz frequencies. 
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Fig. S10 Transient photocurrent responses of In4/3P2Se6 nanosheet photoelectrode measured in 0.5 M 

Na2SO4 aqueous solution under different Xenon light illumination with the same power density of 200 mW 

cm-2.  
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Fig. S11 EIS Nyquist plots of In4/3P2Se6 nanosheet photoelectrode measured in 0.5 M Na2SO4 electrolyte 

under different Xenon light illumination with the same power density of 200 mW cm-2.  
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Fig. S12 1 H NMR spectra of the standard N-BD, standard BA, combined with the 1H NMR collected from the 

reaction solution after the photo-oxidation coupling reaction using In4/3P2Se6 nanosheet photocatalyst.  
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Fig. S13 Calibration curve obtained based on the various concentrated benzylamine analyzed by 1H NMR. 
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Fig. S14 Calibration curve obtained based on the various concentrated N-BD analyzed by 1H NMR spectrum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.2

0.4

0.6

0.8

1.0

1.2

0 4 8 12 16 20

N-BD concentration (mM)

A
re

a
 r

a
ti
o

 (
N

-B
D

/d
io

x
a

n
e

)

Area ratio = 0.05876*con (mM)

R2 = 0.99958



  

17 

 

 

Fig. S15 Photocatalytic oxidative transformation of BA to N-BD by using xenon light source (λ > 200 nm, 200 

mW cm-2) in 10 mL acetonitrile, using 20 mg catalyst with 0.2 mmol BA substrate under ambient condition 

at room temperature. (a) Time-dependent BA conversion, N-BD selectivity and corresponding yield over 

In4/3P2Se6 under Xenon light illumination. (b) 1 H NMR spectra collected from the solution after 10 h photo-

oxidation coupling reaction over In4/3P2Se6 nanosheet photocatalyst. 
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Fig. S16 Corresponding 1H NMR spectra collected from the anaerobic oxidative coupling of BA in the 

condition of 20 mL acetonitrile, 100 μL H2O, 20 mg catalyst and 0.2 mmol BA substrate under anaerobic 

condition at room temperature, illuminated by a 300 W xenon lamp (λ > 300 nm, 200 mW cm-2) for 16 h, 

with dioxane as internal standard.   
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Fig. S17 Time-dependent photocatalytic oxidative transformation of BA to N-BD in 20 mL acetonitrile and 

100 μL H2O, using 20 mg catalyst with 0.2 mmol BA substrate under anaerobic condition at room 

temperature. N-BD yield, selectivity and corresponding conversion of BA over In4/3P2Se6 under Xenon light 

illumination (λ > 300 nm, 200 mW cm-2) were collected. 
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Fig. S18 Mass spectrogram analysis of the reaction solution collected after the 16 h continuous reaction 

under anaerobic condition. Reaction condition:  20 mg catalyst and 0.2 mmol BA substrate in 20 mL 

acetonitrile and 100 μL H2O, illuminated by a 300 W Xenon lamp (λ > 300 nm, 200 mW cm-2).  

Prior to the high-resolution mass spectrogram analysis, the reaction solution was qualitatively 

analyzed based on the characteristic fragment ion peaks (FIPs) after separating the catalyst through 

centrifugal process. The peaks at 108.0812, 196.1125, 160.1123 and 265.1703 shown in Fig. S12 reveal the 

existence of BA, N-BD and the byproduct of benzamide ([M + K+]+) and N-(amino(phenyl)methyl)benzamide 

([M + K+]+) in the final reaction solution, respectively. It is worth noting that the byproduct benzamide can 

be attributed to the dehydrogenation of the imine intermediate generated in the reaction step (Ⅲ) (Figure 

4b) to benzonitrile, which further reacts with water to form benzamide3.  
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Fig. S19 Control photocatalytic test over In4/3P2Se6 nanosheet catalyst only in acetonitrile solvent under 

anaerobic condition. Reaction conditions: acetonitrile (20 mL), catalyst (20 mg), with BA substrate (0.2 

mmol) at room temperature, the reactor was firstly evacuated and no detectable dissolved oxygen gas in 

the reactor. (a) Corresponding 1H NMR spectra collected from the reaction solution after 10 h continuous 

reaction, with dioxane as internal standard. (b) Proposed reaction mechanism for the photocatalytic 

oxidative transformation of BA to N-BD catalyzed by In4/3P2Se6 nanosheet without air or O2 involvement in 

pure acetonitrile solvent. 

As a comparison, we also studied the photocatalytic BA oxidation only in acetonitrile under the same 

anaerobic condition. From the 1H-NMR analysis in Fig. S19a, we can conclude that the N-BD chemical could 

be synthesized after 10 h continuous reaction based on the peaks at 4.7 ppm and 8.38 ppm. Meanwhile, 

some amount of hydrogen gas (22 μmol g-1) was also detected through the on-line gas chromatography 

analysis. Thus, a different reaction mechanism4, 5 was proposed in Figure S19b. The released protons from 

the step II would further react with the photogenerated electrons to produce the hydrogen gas. Note that 

the benzylamine radical could be then deprotonated to form carbon radical and imine intermediate (step II 

and III), which is different with the reaction mechanisms under other two conditions.  
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Fig. S20 Structural characterizations of In4/3P2Se6 nanosheets after water photocatalysis for H2 evolution 

under Xenon light (λ > 200 nm，200 mW cm−2) illumination for 24-hour reaction. (a) Comparison of XRD 

patterns of In4/3P2Se6 nanosheets before and after photocatalytic H2 evolution measurement. (b-d) SEM, 

TEM and HRTEM images of In4/3P2Se6 nanosheet after water photocatalysis. 
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Fig. S21 Structural characterization of In4/3P2Se6 nanosheets after photocatalytic oxidation of benzylamine 

under Xenon light illumination (λ> 300 nm，200 mW cm−2) for 10 h continuous reaction. (a) Comparison of 

XRD patterns of In4/3P2Se6 nanosheets before and after photocatalytic oxidation benzylamine. (b-d) SEM, 

TEM and HRTEM images of In4/3P2Se6 nanosheet after photocatalytic oxidation of benzylamine.  
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Fig. S22 Recycling performance of the In4/3P2Se6 nanosheet catalyst for photocatalytic oxidation of BA. 

Reaction conditions: 20 mg catalyst, 10 mL CH3CN, 0.2 mmol BA, illuminated under Xenon light (λ > 300 nm, 

200 mW cm-2) with continuous stirring at room temperature for 10 h in each cycle. 
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Fig. S23 Photocatalytic oxidative transformation of BA to N-BD over In4/3P2S6 nanosheet in 10 mL acetonitrile, 

using 20 mg catalyst with 0.2 mmol BA substrate under ambient condition at room temperature by using 

Xenon light (λ > 300 nm, 200 mW cm-2). (a) 1 H NMR spectra collected from the solution after 10 h photo-

oxidation coupling reaction. (b) Recycling performance of the In4/3P2S6 nanosheet catalyst for photocatalytic 

oxidation of BA to N-BD with continuous stirring for 10 h in each cycle. 
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Table S1. Comparison of the experimental and calculated crystal parameters of In4/3P2Se6. 

Crystal parameters Refined results Calculation results 

a 6.292 Å 6.362 Å 

b 6.292 Å 6.362 Å 

c 20.163 Å 19.929 Å 

α 90° 90° 

β 90° 90° 

γ 120° 120° 
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