Supporting Information

In-Situ Generated Cu-Co-Zn Trimetallic Sulfides Nanoflowers on Copper Foam: a Highly Efficient OER Electrocatalyst

Jie Bai, Nana Lei, Limin Wang*, Yaqiong Gong*

School of Chemical Engineering and Technology, North University of China, Taiyuan,

030051, P. R. China

* Email: wanglimin@nuc.edu.cn (Limin Wang); gyq@nuc.edu.cn (Yaqiong Gong)

Pretreated copper hydroxide was grown on CF:

$$Cu + 4NaOH + (NH_4)_2S_2O_8 \rightarrow Cu(OH)_2 + 2Na_2SO_4 + 2NH_3 \uparrow + 2H_2O$$
(1)

The precipitation and infusion of multiple cations lead to an increment in the extent of redox reactions. Adding urea served as aconstant source of CO_3^{2-} and OH^- ions, which on reaction with precursor metal ions, stabilized the formation of hydroxides. The presence of NH_4F is beneficial to maintain the needle-like morphology:

$CO(NH_2)_2 + H_2O \rightarrow 2NH_3 + CO_2$	(2)
$NH_3+H_2O \rightarrow NH^{4+}+OH^-$	(3)
$CO_2+H_2O \rightarrow CO_3^{2-}+2H^+$	(4)

$$Co^{2+} + Cu^{2+} + Zn^{2+} + yOH^{-} \rightarrow CuCoZn(OH)_y$$
(5)

When Na₂S is added, metal ions react with sulfur ions and the reaction process is roughly as follows:

$Na_2S \rightarrow 2Na^+ + S^{2-}$	(6)
$9\mathrm{Co}^{2+} + 8\mathrm{S} - \rightarrow \mathrm{Co}_9\mathrm{S}_8$	(7)
$Zn^{2+} + S^{2-} \rightarrow ZnS$	(8)
$2Cu^{2+} + S^{2-} \rightarrow Cu_2S + S \downarrow$	(9)

Fig. S1. SEM images of (a-c) Cu foam at high and low magnifications and images of (d-f) Cu(OH)₂.

Fig. S2. SEM images of (a,b) CuCoZn-S-1 and (c,d) CuCoZn-S-6.

Element	Cu	Со	Zn
Content (Wt %)	90.16	6.10	3.20

 Table S1. Elemental composition of Cu, Co and Zn determined by ICP-OES.

Fig. S3. LSV curves of CuCoZn, CuCo-S and CuZn-S cured for 3 h.

Catalyst	Overpotential	Tafel slope	Electrolyte	Reference
	(mV)	(mV dec ⁻¹)		
CuCoZn-S-3	175@10	62.3	1.0M KOH	This work
MoNiFeS _x @FeNi ₃	192@10	72.8	1.0M KOH	1
NiFeCoS _x @FeNi ₃	210@10	45	1.0M KOH	2
Fe-Ni ₃ S ₂ @FeNi ₃ -8	213@10	83	1.0M KOH	3
(Ni,Fe)S ₂ /MoS ₂	270@10	43.21	1.0M KOH	4
Ni-Co-S-P	280@10	69	1.0M KOH	5
FeNi/(FeNi) ₉ S ₈	283@10	95.1	1.0M KOH	6
MoS ₂ /NiCoS	290@10	77	1.0M KOH	7

Table S2. The comparison of OER catalytic performances between CuCoZn-S-3 and other materials recently reported in the literatures.

Electrocatalysts	Overpotential	Tafel slope	Electrolyte	Reference
	(mV)	(mV dec ⁻¹)		
In ₂ O ₃ /ZnO/Co ₃ O ₄	398	88	1.0 M KOH	8
Cu _x Mo _x /Co _{1-x} O	250	61	1.0 M KOH	9
NPs@RGO				
Co ₃ Fe ₄ V ₃ O _x	249	41	1.0 M KOH	10
CoFeNi-O-1	244	55.4	1.0 M KOH	11
NiFeCoP@CAP/NF,	202	28.9	1.0 M KOH	12
CoNiFeP	261	49.5	1.0 M KOH	13
np-NiFeCoP	244	41.4	1.0 M KOH	14
NiCoFe-P-NP@NiCoFe-	223	78	1.0 M KOH	15
РВА				

Table S3. The comparison of OER catalytic performances of other trimetallic oxides and phosphide materials recently reported in the literatures.

Fig. S4. Cyclic voltammograms at different scan rates (10, 20, 30, 40 and 50 mV S⁻¹). (a) CF, (b) $Cu(OH)_2$, and (c) CuCoZn-OH, (d) CuCoZn-S-3 and (e)Ir/C.

Catalysts	$\eta_{10} (mV)$	$\eta_{100}~(mV)$
CuCoZn-S-1	180	262
CuCoZn-S-6	188	286

Table S4. Comparison of OER activity of CuCoZn-S catalysts with different time at 1 M KOH.

Fig. S5. ECSA-normalized LSV curves of CF, Cu(OH)₂,CuCoZn-OH and CuCoZn-S-3.

Fig. S6. Comparison image of different curing time. (a) Nyquist plots. (b) corresponding C_{dl} values. (c) Cyclic voltammograms of CuCoZn-S-1 and (d) Cyclic voltammograms of CuCoZn-S-6.

Fig. S7. SEM image of OER stability test.

Fig. S8. XPS spectrum after OER stability test. (a) S 2p and (b) O 1s.

References

- Q. Li, W. Zhang, J. Shen, X. Zhang, Z. Liu, J. Liu, J. Alloys Compd., 2022, 902, 163670.
- J. Shen, Q. Li, W. Zhang, Z. Cai, L. Cui, X. Liu, J. Liu, J. Mater. Chem. A, 2022, 10, 5442-5451.
- 3 W. Zhang, Q. Jia, H. Liang, L. Cui, D. Wei, J. Liu, Chem. Eng. J., 2020, 396, 125315.
- 4 Y. Liu, S. Jiang, S. Li, L. Zhou, Z. Li, J. Li, M. Shao, Appl. Catal. B Environ., 2019, 247, 107-114.
- 5 Y. Tian, Z. Lin, J. Yu, S. Zhao, Q. Liu, J. Liu, R. Chen, Y. Qi, H. Zhang, R. Li, J. Li, J. Wang, ACS Sustain. Chem. Eng., 2019, 7, 14639-14646.
- H. Meng, S. Lin, J. Feng, L. Zhang, A. Wang, J. Colloid Interface Sci., 2022, 610, 573-582.
- 7 C. Qin, A. Fan, X. Zhang, S. Wang, X. Yuan, X. Dai, J. Mater. Chem. A, 2019, 7, 27594-27602.
- P. Ilanchezhiyan, G. M. Kumar, C. Siva, A. Madhankumar, H. C. Jeon, T. W.
 Kang and D. Y. Kim, Int. J. Hydrogen Energy, 2019, 44, 23081-23090.
- 9 T. Niyitanga and H. Kim, Chem. Eng. J., 2023, **451**, 138649.
- 10 Chen, H. Li, Z. Pei, Q. Huang, Z. Yuan, C. Wang, X. Liao, G. Henkelman, Y. Chen and L. Wei, J. Mater. Chem. A, 2020, 8, 15951-15961.
- Z. Cao, Z. Jiang, Y. Li, C. Huang and Y. Li, ChemSusChem, 2019, 12, 2480-2486.
- S. Zhao, Y. Zhao, J. Chen, R. Dai, W. Zhou, J. Yang, X. Zhao, Z. Chen, Y. Zhou, H. Zhang and A. Chen, Electrochim. Acta, 2022, 426, 140788.
- Y. Zhang, Z. Li, K. Zhang, Z. Wu, F. Gao and Y. Du, Appl. Surf. Sci., 2022, 590, 153102.
- Y. Pang, W. Xu, S. Zhu, Z. Cui, Y. Liang, Z. Li, S. Wu, C. Chang and S. Luo,
 J. Mater. Sci. Technol., 2021, 82, 96-104.
- 15 G. Zhang, Y. Li, X. Xiao, Y. Shan, Y. Bai, H. G. Xue, H. Pang, Z. Tian and Q. Xu, Nano Lett, 2021, 21, 3016-3025.